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Abstract 

 
    The performance of a system, especially a 
multiprocessor system, heavily depends upon the efficiency 
of its bus architecture. In System-on-a-Chip (SoC), the bus 
architecture can be devised with advantages such as 
shorter propagation delay (resulting in a faster bus clock), 
larger bus width, and multiple buses. This paper presents 
five different SoC bus architectures for a multiprocessor 
system: Global Bus I Architecture (GBIA), Global Bus II 
Architecture (GBIIA), Bi-FIFO Bus Architecture (BFBA), 
Crossbar Switch Bus Architecture (CSBA), and 
CoreConnect Bus architecture (CCBA). The performance 
of these architectures is evaluated using applications from 
wireless communications - an Orthogonal Frequency 
Division Multiplexing (OFDM) transmitter - and from 
video processing - an MPEG2 decoder. To increase 
performance, these bus architectures employ a pipelined 
scheme, resulting in improved throughput. While all five 
bus architectures perform well, we find that BFBA and 
CSBA perform the best for the OFDM transmitter and the 
MPEG2 decoder, respectively. 
 
1. Introduction 
 
    Most of the current prevailing buses such as VME [1] 
and PCI [2] were designed for system level buses to 
connect to discrete devices on a Printed Circuit Board 
(PCB). However, there are many restrictions on a PCB, not 
least of which is the number of pins allowed. A System-on-
a-Chip (SoC) allows designers to overcome the drawbacks 
of PCBs by implementing many or most parts of a system 
on a board on a single silicon chip. SoC technology allows 
one to take advantage of increased bus speed and decreased 
area compared with a PCB.  
    In the implementation of a multiprocessor SoC, the bus 
architecture comes to the forefront because the performance 
of the system is not dependent only on the CPU speed but 
also on the bus architecture which may cause in the system. 
An efficient bus architecture and arbitration for reducing 
contention plays an important role in maximizing the 
performance of the system. In this paper, five kinds of 
different multiprocessor SoC bus architectures are modeled 

and compared with detailed simulation: Global Bus I 
Architecture (GBIA), Global Bus II Architecture (GBIIA), 
Bi-FIFO Bus Architecture (BFBA), the Crossbar Switch 
Bus Architecture (CSBA), and CoreConnect bus 
architecture (CCBA).  
    For the bus performance evaluation, we apply these 
architectures to two application programs, one from 
wireless communications: an Orthogonal Frequency 
Division Multiplexing (OFDM) transmitter, and the other 
from video processing: an MPEG2 decoder. The pipelined 
operation in an SoC multiprocessor system allows 
significant improvements in the data throughput.  
    The paper is organized as follows. Section 2 shows the 
background and our motivation. Section 3 presents the 
detailed description about the five SoC bus architectures. In 
Section 4, we explain the two applications used for these 
architectures, including job assignments in each “Compute 
Node” (CN). Each job assignment is a unit of data 
processing in the multiprocessor system. Our experiment 
and simulation results are described in Section 5. Finally, 
we conclude the paper in Section 6. 
 
2. Background and Motivation 
 
     Most of the recent designs of on-chip buses borrow their 
ideas from standard buses, especially VME and PCI, which 
were designed for PCB systems. The bus architecture for an 
SoC should be different from a PCB bus architecture 
because an SoC has a faster transfer rate due to shorter 
propagation delays and no restrictions on numbers of pins 
due to packaging or signaling constraints. 
    The most popular bus architectures utilize hierarchical 
levels of buses. For example, CoreConnect has three levels 
of hierarchy: Processor Local Bus (PLB), On-chip 
Peripheral Bus (OPB), and Device Control Register (DCR) 
[3,4].  PLB provides a high performance and low latency 
processor bus with separate read and write transactions, 
while OPB provides low speed with separate read and write 
data buses to reduce bottlenecks caused by slow I/O devices 
such as serial ports, parallel ports, and UARTs. The daisy-
chained DCR offers a relatively low-speed data path for 
passing status and configuration information. The 
Advanced Micro controller Bus Architecture (AMBA) from 



ARM has two levels of hierarchy: the Advanced High 
performance Bus (AHB), similar to PLB, and the Advanced 
Peripheral Bus (APB), similar to OPB [5]. CoreConnect 
and AMBA, which are pipelined buses, both require 
bridges between the high performance bus and the low 
speed bus for data transfer between the buses. CoreFrame 
from Palmchip Company is a nonpipelined bus which also 
has two independent bus types: Mbus for memory transfer 
and Palmbus for I/O devices [6].  
    The user configurable Triscend bus architecture utilizes a 
bus FIFO to enhance bus pipelining between masters and 
slaves [7]. The arbiter logic is relatively simple because the 
FIFO is both the single master for the slave side and also 
the single slave for the master side. The FIFO, however, 
requires additional memory and makes it difficult to 
predictably satisfy real-time constraints as compared to 
prioritized buffers. The Silicon Backplane from Sonic Inc. 
guarantees fixed bandwidth and latency by Time Division 
Multiplexed Access (TDMA) based arbitration [8]. 
    As mentioned above, most current bus architectures for 
SoC have focused on increasing the communication 
efficiency between the high speed processor bus and the 
low speed peripheral bus. Yet, for many applications, the 
performance of multiprocessor systems relies more on the 
efficient communication among processors and a balanced 
distribution of the computation among the processors. The 
goal of this paper is the design and evaluation of different 
types of high-speed processor buses for multiprocessor 
system on a single chip. All five bus architectures we 
modeled have a separate 32-bit address bus and 64-bit data 
bus. GBIA and GBIIA are implemented similar to the 
conventional bus architecture of PCBs while BFBA, CSBA, 
and CCBA are more aggressive approaches.  
 
3. Five Bus Architectures for SoC 
 
    We model five different bus architectures for a 
multiprocessor SoC. When we refer to a “Compute Node” 
(CN), we are referring to a processor together with a local 
SRAM for program memory (instruction cache) and a local 
SRAM for data memory (data cache). In this paper, we use 
the Motorola PowerPC (MPC) 750 for our processor core. 
Optional registers are added to CNs depending on the 
architecture and are described in the following subsections. 
In GBIA, each CN shares a global bus and is synchronized 
with handshaking using shared registers between CNs. In 
GBIIA, an arbiter is added for all CNs to share the global 
bus. The third architecture is the Bi-FIFO bus architecture 
in which there are Bi-FIFOs to pass data between CNs. In 
the fourth architecture, we use a Crossbar Switch to provide 
multiple data paths among CNs. Finally, in the fifth 
architecture, we utilize the IBM CoreConnect [4] on-chip 
bus. The main differences lie in the way of synchronization 
and which CNs can communicate with which other CNs. 

For synchronization, GBIA and BFBA use shared registers, 
while GBIIA, CSBA, and CCBA utilize memory 
partitioning to preserve the data from the preceding CN. 
Only the adjacent CNs can communicate to each other in 
GBIA and BFBA while all CNs can pass data to any other 
CN in GBIIA, CSBA and CCBA.  We model four CNs in 
all our multiprocessor architecture examples.  
 
3.1 Global Bus I Architecture (GBIA) 
 
    Figure 1 illustrates GBIA in detail; as can be seen, CNs 
have a dedicated local bus (e.g., CPU Bus A) and a shared 
global bus. There are two registers, DONE_OP and 
DONE_RV, for handshaking between the communicating 
CNs. Each CN sets a flag in these registers after the data 
processing or the data receipt from the corresponding CN. 
The any CN can access the memory of upper adjacent CN 
through the segmented global bus. BB_x blocks (BB_1, 
BB_2, etc.) are bus bridges which allow different 
processors to access data memory. Note that while the 
GBIA is capable of allowing communication between lower 
adjacent or non-adjacent CNs, the arbitration protocol we 
employ limits the communication to upper adjacent CNs. 

 
Figure 1: The diagram of global bus I architecture 

 
Example 1: Suppose that MPC 750_A writes to SRAM_A. 
Then the address decoder of MPC 750_A makes BB_1 
connect to SRAM_A, and BB_2 and BB_8 block the access 
from any other CN. Next, MPC 750_B reads from 
SRAM_A. While the address decoder of MPC 750_B makes 
BB_1 disconnect from CPU Bus A, BB_2 and BB_3 are 
connected to CPU Bus B by the control of the address 
decoder. For the handshake operation between CN A and 
CN B, after MPC750_A sets DONE_OP_B at the 
completion of its operation, MPC750_B resets 
DONE_OP_B and then reads SRAM_A. When MPC 750_B 
finishes reading from SRAM_A, MPC 750_B sets 
DONE_RV_B to “1”. MPC 750_A then resets 



DONE_RV_B to zero and begins processing the next 
packet.  
 
3.2 Global Bus II Architecture (GBIIA) 
 
    In GBIIA, all CNs share one global bus as shown in 
Figure 2. Since the global bus can serve only one CN at a 
time, an arbiter is required to allocate the global bus to a 
CN when two or more CNs are contending for the global 
bus. Currently the arbiter grants the global bus in a FIFO 
fashion. 
    Twenty four memory locations (double words) in 
SRAM_D are reserved to store data ready flags. Data ready 
flags are written by the previous CN in the pipelined 
operation to indicate that its operation is complete, and data 
is available for the next CN to read and use. The CNs keep 
checking the data ready flags in SRAM_D and start their 
operation when the appropriate data ready flag value 
becomes one.  
    The arbitration protocol and data ready flag technique 
are also applied to the crossbar switch architecture. 
 

 
Figure 2: The diagram of global bus II architecture 

 
3.3 Bi-FIFO Bus Architecture (BFBA) 

 
Figure 3: The diagram of Bi-FIFO bus architecture 

    Figure 3 shows the Bi-FIFO bus architecture. The data 
output by each CN can be exchanged through the Bi-FIFOs 
located between CNs. Each CN has two ports to access the 
Bi-FIFO as shown in Figure 3: the upper port, ZZ, and the 
lower port, XX. One CN can push the result data after the 

completion of the assigned operation to a Bi-FIFO, and the 
adjacent CN can read the data from the Bi-FIFO. For this 
operation, the user defines high and low threshold values 
for Bi-FIFO operation. A high threshold value indicates the 
Bi-FIFO is full while a low threshold value indicates the Bi-
FIFO is empty. An interrupt signal is generated to the next 
CN when the data in a Bi-FIFO reaches the high threshold. 
The interrupted CN reads the data from Bi-FIFO until the 
data of the Bi-FIFO reaches the low threshold.  
    The synchronization issue between communicating CNs 
is resolved with the interrupt function and two flag 
registers, TX_DONE and RV_DONE, for handshaking. 
These two registers, plus the threshold registers, are 
contained in the “REGISTERS” block in Figure 3. 
 
3.4 Crossbar Switch Bus Architecture (CSBA) 
 
    CSBA is an extended version of GBIIA. An array of 
transmission gates provides paths between all CNs and 
shared SRAMs as shown in Figure 4. In this architecture, 
each CN is composed of an MPC 750 and a local software 
SRAM (instruction cache). Each CN can access any shared 
SRAM A, B, C, or D at the same time if there is no 
competition for accessing the same SRAM block. When 
memory competition for the same shared SRAM occurs, an 
arbiter resolves this situation in a FIFO fashion. 
    To solve the synchronization problem between 
communicating CNs, SRAM_D has 24 data ready flags as 
was done in GBIIA. 
 

 
Figure 4: The diagram of crossbar switch bus architecture 

 
3.5 IBM CoreConnect Bus Architecture (CCBA) 
  

 
 

Figure 5: The diagram of IBM CoreConnect 



   Finally, we utilize the IBM CoreConnect [4] standard on-
chip bus to compare the performance with our previous four 
bus designs. Since we focus on high performance, we just 
use the IBM CoreConnect Processor Local Bus (PLB) core 
as shown in Figure 5.  MPC 750s are connected to the PLB 
through separate address, read, and write data buses with 
many control signals. SRAMs are also attached to the PLB. 
We designed the proper interfaces for MPC 750s and 
SRAMs. The PLB has separate read and write data buses 
similar to the approach of Winegarden [7]. We employ a 
fixed priority arbitration scheme.  
    We use the PLB core with 64-bit wide separate read and 
write buses provided by IBM under the license agreement. 
 
4. Application Example 
4.1 OFDM Transmitter Application 
 

 
Figure 6: The block diagram of an OFDM transmitter 

 
    Five kinds of bus architectures for SoC were modeled 
and simulated with four-compute nodes (CNs): GBIA, 
GBIIA, BFBA, CSBA, and CCBA. For our first example, 
we use a wireless communication protocol, Orthogonal 
Frequency Division Multiplexing (OFDM)[9]. Specifically, 
we utilize the OFDM transmitter on all five bus 
architectures for their performance evaluation. Each CN 
executes the assigned OFDM functions, and the computed 
results are transferred to next CN as input data. The 
required data transactions occur with different methods 
according to the bus architecture. The bus performance is 
heavily dependent upon the arbitration scheme and the 
architecture to handle and reduce the bus contention among 
CNs. 
    OFDM employs several parallel channels with low bit 
rates whose main lobes of carriers are orthogonal and side 
lobes of carriers are overlapping one another. This is an 
efficient way of carrying several sub channels in a fixed 
bandwidth. The sub carriers are not separated by bandwidth 
but rather overlap their side lobes with each other. The 
frequency spacing between the sub carriers is arranged such 
that they become orthogonal. A Fast Fourier Transform 
(FFT) is used for digital modulation/demodulation of each 
sub channel. 
    Figure 6 shows the block diagram of an OFDM 
transmitter. The subchannels are modulated by an Inverse 
FFT (IFFT), and then a cyclic extension is added to avoid 
inter symbol interference caused by the physical channel. 

This extension is called the guard signal. From the physical 
channel's point of view, the extended OFDM symbol 
appears periodically. 
 

 
Figure 7: OFDM data format 

 
    Figure 7 shows the OFDM data format being transmitted. 
The OFDM data starts with a train pulse. The train pulse 
allows for the channel estimation and data synchronization 
at the receiver side. Guard and data packets follow the train 
pulse block. One packet of OFDM data we simulated here 
contains a 128-complex valued sample and a 32-complex 
valued guard signal. The guard data is usually a quarter of 
the data block. 
 

 
Figure 8: The flowchart of OFDM transmitter 

 
    Figure 8 shows the flow chart of the OFDM transmitter. 
The first three blocks are for train pulse generation and 
symbol generation which maps the original data to a symbol 
to be transmitted. The first three blocks (Initialization, 
Train Pulse Generation, and Symbol Generation) in    
Figure 8 are excluded in calculating throughput since these 
routines are executed only once at the startup. The End of 
Packet (EOP) loop controls data generation or data reading 
from an external device, which generates data to be 
transmitted. This EOP loop is repeated as many times as the 
size of the data packet, meanwhile, the outer loop is also 
repeated as many times as there are new data packets to be 
transmitted. The generated data is fed into the modulation 



block, which executes bit reversal, IFFT, normalizing, and 
insertion of the guard signal, sequentially. 
    The job assignment in each CN proceeds after careful 
analysis  of  OFDM   transmitter   functions   based   on  the 
flowchart. Table 1 outlines the assignment in each CN. The 
job on CN A seems heavier, but it is not the bottleneck of 
system because the first three functions listed for CN A 
(italicized in Table 1) are executed only once. Only data 
generation, symbol mapping and bit reversal functions are 
iterated in CN A.  The job on CN B, IFFT, unfortunately is 
difficult to split up due to the structure of the IFFT. 
 

Table 1: The function assignment in each compute node 

 
 
4.2 MPEG2 Decoder Application 
 
    MPEG2 video is an ISO/IEC standard that specifies the 
syntax and the semantics of encoded video bit streams. 
These include parameters such as bit rates, picture sizes, 
and resolutions that may be applied, and how the video bit 
stream is decoded to reconstruct the picture. 
    Figure 9 shows input video frames and their processing 
on CNs. The video stream data is assumed as follows: M=1, 
N=2, where M is a period either of intra frame (I) or of 
predictive frame (P), and N is the number of pictures in a 
group of pictures. Each frame size is specified with 16 
pixels by 16 pixels to reduce the simulation time in this 
application. All video frames that are input to CN A are 
distributed to each CNs, and each decoded frame is handed 
over to CN D at the end. 
 

 
Figure 9: The input video frame of MPEG2 

 
5. Experimental Results 
 
    For the bus architecture modeling and simulation, we use 
Seamless/CVE, the hardware/software co-simulator from 
Mentor Graphics [10], together with VCS, the Verilog HDL 

simulator from Synopsys [11]. Four MPC 750s from 
Seamless are employed for CPUs. 
    Each CN employs an MPC 750 with an 83.33 MHz CPU 
external clock speed, SYSCLK. The maximum frequency 
of SYSCLK, which dictates the maximum bus speed, is 
limited to 83.33 MHz in the PowerPC Hardware 
Specification (note that the internal clock speed can be 
much faster, e.g., 400 MHz) [12]. However, our results are 
equally applicable to much faster bus clock speeds. 
    Due to the sequential execution of functions among CNs, 
synchronization is required between communicating CNs. 
In this experiment, handshaking using shared registers 
between CNs, the generation of interrupt signals, and 
memory-partitioning techniques are adopted for 
synchronization. 
 
5.1 Global BUS I Architecture (GBIA) 
 
    Figure 10 exhibits an eight-packet OFDM transmitter 
simulation waveform, and Figure 11 draws the pipelined 
operation. Figures 10 and 11 show CN A, CN B, CN C and 
CN D from top to bottom, respectively. There is a global 
bus at the bottom of both Figures 10 and 11 demonstrating 
the data transaction between CNs. After long processing of 
the train pulse and symbol generation in CN A, the first 
data packet is processed in CN A. CN B waits for the 
completion of CN A. The IFFT on CN B is then executed 
with the result from CN A in parallel with a new data 
packet being processed by CN A. CN C and CN D proceed 
with their assigned execution after receiving data from 
previous CNs. In this fashion, the pipelined operation 
achieves a significant increase in final data throughput. The 
output data packet is generated every 403,000 cycles which 
corresponds to 4.8360 ms/packet and 2.1175 Mbps. 
 

 
Figure 10: The waveform of OFDM transmitter in GBIA 

 
    Note that in Figure 11, “w” refers to writing data to 
SRAM_{A, B, C, D} and “r” refers to reading data from 
SRAM_{A, B, C, D}. Note the pipelined flow of packets 
through the architecture. 



     The MPEG2 decoder is also simulated in Seamless and 
VCS. Each frame is decoded for 527,545 cycles which is 
same as 63305 ms/frame and 0.4852 Mbps. 
 

 
Figure 11: The pipeline operation of OFDM on GBIA 

 
5.2 Global BUS II Architecture (GBIIA) 
 

 
Figure 12: The pipeline operation of OFDM on GBIIA 

 
    Figure 12 shows the pipelined operation of OFDM on 
GBIIA. The bottleneck of the system arises from the IFFT 
function on  CN B after it reads the result from CN A. CN 
C has to wait until CN B has completed the IFFT, and CN 
D is delayed until CN C finishes.  The second bus 
transaction in the global bus at the bottom of Figure 11 
shows that CN B and CN C utilize the bus alternately each 
reading a word at a time. This does not degrade the 
performance because each SRAM takes two cycles to 
access data, leaving, in general operation by one CPU, 
alternate cycles unused. An output data packet is generated 
every 381,061 cycles which corresponds to 4.5727 
ms/packet and 2.2394 Mbps. 
    In MPEG2 application, each frame is decoded for 
377,562 cycles which is equivalent to 4.5307 ms/frame, and 
the throughput is 0.6780 Mbps. 
 
5.3 Bi-FIFO Bus Architecture (BFBA) 
 
    Figure 13 illustrates the pipelined operation of this 
architecture and shows the four CN operations, CN A, CN 
B, CN C, and CN D from top to bottom. Interrupt signals at 
the bottom are generated when the data in a Bi-FIFO 
reaches the high threshold so that the next CN starts to read 
the Bi-FIFO.  An output data packet is produced every 

378,348 cycles, which is equivalent to 4.5402ms/packet and 
2.2554 Mbps. 
 

Figure 13: The pipeline operation of OFDM on BFBA 
 
    In the MPEG2 application, each frame is decoded for 
507,853 cycles which corresponds to 6.0942 ms/frame and 
0.5041 Mbps. 
 
5.4 Crossbar Switch Bus Architecture (CSBA) 
 

 
Figure 14: The pipeline operation of OFDM on CSBA 

 
    Figure 14 illustrates the pipelined operation of OFDM 
executing on CSBA. Since IFFT causes the bottleneck in 
the system performance, CSBA does not outperform any 
other bus architectures as much as we expected. This is 
because the pipelined operation is done at the function level 
rather than the data block level. The distinct feature of this 
architecture is the reduction in bus contention due to 
multiple point-to-point data paths such that any CPU can 
access any available SRAM on the crossbar switch. The 
output data packet is generated every 380,199 cycles, which 
is equivalent to 4.5624 ms/packet and 2.2444 Mbps. 
    In the MPEG2 application, each frame is decoded for 
377,548 cycles which is equivalent to 4.5306 ms/frame, and 
the throughput is 0.6781 Mbps 
 
5.5 IBM CoreConnect Bus Architecture (CCBA) 
 
    Figure 15 shows the pipelined operation of a current 
available standard on-chip bus architecture, CoreConnect 
from IBM [4]. The throughput we have measured from the 
simulation is 2.24156 Mbps. We use the 64 bit IBM 



CoreConnect core with eight masters. This core requires an 
arbitration overhead of 2 cycles due to the complexity of 
the architecture. This architecture allows a data packet to be 
produced every 380, 686 cycles, equivalent to 4.5682 
ms/packet and 2.2416 Mbps. 
 

 
 
Figure 15: The pipeline operation of OFDM on CoreConnect 

 
    In the MPEG2 decoder, each frame is decoded for 
378,141 cycles which is equivalent to 4.5382 ms/frame, and 
the throughput is 0.6769 Mbps. 
 
5.6 Comparison of Results 
 
    Using OFDM with the same data input, Table 2 shows 
the result of our performance comparison for the bus 
architectures. As shown in Figure 16, all five bus 
architectures have almost the same throughputs since the 
OFDM application depends more on CPU processing time 
than on bus architecture. The IFFT on CN B is the 
bottleneck of the system. 
    The performance difference between BFBA and CSBA 
lies in the method of pointer increment. In BFBA, the Bi-
FIFO controller moves the pointer to the next memory 
block, while in CSBA the pointer increment is done by the 
application code. The pointer increment done by the 
hardware is much faster than that by the software.  Thus, 
read and write times in BFBA are 2675 cycles per packet 
less than those in CSBA, yielding a 0.0055 Mbps 
throughput difference. 
    The performance differences between GBIA and GBIIA 
arise from the synchronization protocols. In GBIA, there is 
a gap during the reading times from the next CN between 
write and read in the current CN. This can be seen in the 
gray “wait” boxes in Figure 11. Note especially the gray 
“wait” boxes between a “w” and a “r” for CN B which are 
not present for CN B in Figures 12, 13, 14, and 15. This 
allows GBIIA to outperform about 0.0609 Mbps in 
throughput.  
    The performance of the on-chip standard bus, 
CoreConnect from IBM, is in between the performance of 
CSBA and GBIIA. Table 2 demonstrates that the 
performance of a bus architecture does depend on the data 
transfer paths among communication entities. However, the 

performance improvement most heavily depends upon the 
application and the distribution of the application algorithm 
among the CNs. 

 
   Table 2: The performance comparison of bus architectures 

                    in OFDM transmitter 

 
 

 
Figure 16: The throughput comparison of bus architectures 

                     in OFDM transmitter 
 

Table 3: The performance comparison of bus architectures 
                   in MPEG2 decoder  

 
 

 
Figure 17: The throughput comparison of bus architectures 
                   In MPEG2 decoder 
 
    In the MPEG2 decoder shown in Table 3 and Figure 17, 
CSBA, GBIIA, and CCBA show better performance than 
BFBA and GBIA. The reason is the former three bus 



architectures support global resource access, but, in the 
latter two, data has to be passed from CN A to each CN 
sequentially to supply the global data to be processed in 
each CN. 
    In the above comparison, the performance of a bus 
architecture is affected by the algorithm of application. For 
example, BFBA shows the best performance for an 
algorithm that has many local variables, small loops, and 
strong data dependency between functions because they can 
sequentially process functions with fast memory pointer 
increments between CNs. OFDM is a good example for 
these architectures. On the other hand, the MPEG2 decoder  
is a good example of an algorithm that needs to access 
many global variables, and has a big loop with its nested 
loops and hierarchy data structure. For those kinds of 
applications, CSBA, GBIIA and CCBA are the better 
choices than either BFBA or GBIA. 
 
6. Conclusion 
 
    In this paper, we have presented five different 
multiprocessor SoC bus architectures: GBIA, GBIIA, 
BFBA, CSBA, and CCBA. We have compared 
performance employing an OFDM transmitter and MPEG2 
decoder application. Each architecture can significantly 
increase performance with pipelined operation among CNs. 
However, the overall system performance is limited by the 
bottleneck of one CN executing IFFT in OFDM transmitter, 
resulting in an unbalanced job distribution in the pipelined 
operation.  
    As seen in OFDM part of section 5.6, the Bi-FIFO and 
Crossbar Switch bus architectures outperform GBIA, 
GBIIA and CCBA although the performance difference is 
not significant. We would expect an example with less 
regularity to perform much better on GBIIA and CBSA 
since GBIIA and CSBA allow direct communication 
between non-adjacent CNs. In the MPEG2 decoder 
application, CSBA, GBIIA, and CCBA outperform BFBA 
and GBIA because they allow global resources access 
unlike BFBA and GBIA. From the above comparisons, bus 
architectures for a certain system must be determined by the 
type of application,  and  we  provide  a  certain  level  of  
practical guidelines for the selection of a bus architecture in 
section 5.6. 
    The main contribution of this paper is the exploration of 
high  performance  multiprocessor  SoC  bus  architectures,  
 
 
 
 
 
 
 
 

which has  not  been  explored  in  previous  papers [3-8].   
For our  future work, we intend to examine more diverse 
applications, carry out more detailed studies on high speed 
bus design including interconnect delay, and propose a new 
bus architecture combining the best characteristics of the 
five designs presented in this paper. 
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