
A Comparison of Five Different
Multiprocessor SoC Bus Architectures

Kyeong Keol Ryu, Eung Shin, and Vincent J. Mooney

Georgia Institute of Technology
Electrical and Computer Engineering

Atlanta, GA 30332
{kkryu, eung, mooney}@ece.gatech.edu

Abstract

 The performance of a system, especially a
multiprocessor system, heavily depends upon the efficiency
of its bus architecture. In System-on-a-Chip (SoC), the bus
architecture can be devised with advantages such as
shorter propagation delay (resulting in a faster bus clock),
larger bus width, and multiple buses. This paper presents
five different SoC bus architectures for a multiprocessor
system: Global Bus I Architecture (GBIA), Global Bus II
Architecture (GBIIA), Bi-FIFO Bus Architecture (BFBA),
Crossbar Switch Bus Architecture (CSBA), and
CoreConnect Bus architecture (CCBA). The performance
of these architectures is evaluated using applications from
wireless communications - an Orthogonal Frequency
Division Multiplexing (OFDM) transmitter - and from
video processing - an MPEG2 decoder. To increase
performance, these bus architectures employ a pipelined
scheme, resulting in improved throughput. While all five
bus architectures perform well, we find that BFBA and
CSBA perform the best for the OFDM transmitter and the
MPEG2 decoder, respectively.

1. Introduction

 Most of the current prevailing buses such as VME [1]
and PCI [2] were designed for system level buses to
connect to discrete devices on a Printed Circuit Board
(PCB). However, there are many restrictions on a PCB, not
least of which is the number of pins allowed. A System-on-
a-Chip (SoC) allows designers to overcome the drawbacks
of PCBs by implementing many or most parts of a system
on a board on a single silicon chip. SoC technology allows
one to take advantage of increased bus speed and decreased
area compared with a PCB.
 In the implementation of a multiprocessor SoC, the bus
architecture comes to the forefront because the performance
of the system is not dependent only on the CPU speed but
also on the bus architecture which may cause in the system.
An efficient bus architecture and arbitration for reducing
contention plays an important role in maximizing the
performance of the system. In this paper, five kinds of
different multiprocessor SoC bus architectures are modeled

and compared with detailed simulation: Global Bus I
Architecture (GBIA), Global Bus II Architecture (GBIIA),
Bi-FIFO Bus Architecture (BFBA), the Crossbar Switch
Bus Architecture (CSBA), and CoreConnect bus
architecture (CCBA).
 For the bus performance evaluation, we apply these
architectures to two application programs, one from
wireless communications: an Orthogonal Frequency
Division Multiplexing (OFDM) transmitter, and the other
from video processing: an MPEG2 decoder. The pipelined
operation in an SoC multiprocessor system allows
significant improvements in the data throughput.
 The paper is organized as follows. Section 2 shows the
background and our motivation. Section 3 presents the
detailed description about the five SoC bus architectures. In
Section 4, we explain the two applications used for these
architectures, including job assignments in each “Compute
Node” (CN). Each job assignment is a unit of data
processing in the multiprocessor system. Our experiment
and simulation results are described in Section 5. Finally,
we conclude the paper in Section 6.

2. Background and Motivation

 Most of the recent designs of on-chip buses borrow their
ideas from standard buses, especially VME and PCI, which
were designed for PCB systems. The bus architecture for an
SoC should be different from a PCB bus architecture
because an SoC has a faster transfer rate due to shorter
propagation delays and no restrictions on numbers of pins
due to packaging or signaling constraints.
 The most popular bus architectures utilize hierarchical
levels of buses. For example, CoreConnect has three levels
of hierarchy: Processor Local Bus (PLB), On-chip
Peripheral Bus (OPB), and Device Control Register (DCR)
[3,4]. PLB provides a high performance and low latency
processor bus with separate read and write transactions,
while OPB provides low speed with separate read and write
data buses to reduce bottlenecks caused by slow I/O devices
such as serial ports, parallel ports, and UARTs. The daisy-
chained DCR offers a relatively low-speed data path for
passing status and configuration information. The
Advanced Micro controller Bus Architecture (AMBA) from

ARM has two levels of hierarchy: the Advanced High
performance Bus (AHB), similar to PLB, and the Advanced
Peripheral Bus (APB), similar to OPB [5]. CoreConnect
and AMBA, which are pipelined buses, both require
bridges between the high performance bus and the low
speed bus for data transfer between the buses. CoreFrame
from Palmchip Company is a nonpipelined bus which also
has two independent bus types: Mbus for memory transfer
and Palmbus for I/O devices [6].
 The user configurable Triscend bus architecture utilizes a
bus FIFO to enhance bus pipelining between masters and
slaves [7]. The arbiter logic is relatively simple because the
FIFO is both the single master for the slave side and also
the single slave for the master side. The FIFO, however,
requires additional memory and makes it difficult to
predictably satisfy real-time constraints as compared to
prioritized buffers. The Silicon Backplane from Sonic Inc.
guarantees fixed bandwidth and latency by Time Division
Multiplexed Access (TDMA) based arbitration [8].
 As mentioned above, most current bus architectures for
SoC have focused on increasing the communication
efficiency between the high speed processor bus and the
low speed peripheral bus. Yet, for many applications, the
performance of multiprocessor systems relies more on the
efficient communication among processors and a balanced
distribution of the computation among the processors. The
goal of this paper is the design and evaluation of different
types of high-speed processor buses for multiprocessor
system on a single chip. All five bus architectures we
modeled have a separate 32-bit address bus and 64-bit data
bus. GBIA and GBIIA are implemented similar to the
conventional bus architecture of PCBs while BFBA, CSBA,
and CCBA are more aggressive approaches.

3. Five Bus Architectures for SoC

 We model five different bus architectures for a
multiprocessor SoC. When we refer to a “Compute Node”
(CN), we are referring to a processor together with a local
SRAM for program memory (instruction cache) and a local
SRAM for data memory (data cache). In this paper, we use
the Motorola PowerPC (MPC) 750 for our processor core.
Optional registers are added to CNs depending on the
architecture and are described in the following subsections.
In GBIA, each CN shares a global bus and is synchronized
with handshaking using shared registers between CNs. In
GBIIA, an arbiter is added for all CNs to share the global
bus. The third architecture is the Bi-FIFO bus architecture
in which there are Bi-FIFOs to pass data between CNs. In
the fourth architecture, we use a Crossbar Switch to provide
multiple data paths among CNs. Finally, in the fifth
architecture, we utilize the IBM CoreConnect [4] on-chip
bus. The main differences lie in the way of synchronization
and which CNs can communicate with which other CNs.

For synchronization, GBIA and BFBA use shared registers,
while GBIIA, CSBA, and CCBA utilize memory
partitioning to preserve the data from the preceding CN.
Only the adjacent CNs can communicate to each other in
GBIA and BFBA while all CNs can pass data to any other
CN in GBIIA, CSBA and CCBA. We model four CNs in
all our multiprocessor architecture examples.

3.1 Global Bus I Architecture (GBIA)

 Figure 1 illustrates GBIA in detail; as can be seen, CNs
have a dedicated local bus (e.g., CPU Bus A) and a shared
global bus. There are two registers, DONE_OP and
DONE_RV, for handshaking between the communicating
CNs. Each CN sets a flag in these registers after the data
processing or the data receipt from the corresponding CN.
The any CN can access the memory of upper adjacent CN
through the segmented global bus. BB_x blocks (BB_1,
BB_2, etc.) are bus bridges which allow different
processors to access data memory. Note that while the
GBIA is capable of allowing communication between lower
adjacent or non-adjacent CNs, the arbitration protocol we
employ limits the communication to upper adjacent CNs.

Figure 1: The diagram of global bus I architecture

Example 1: Suppose that MPC 750_A writes to SRAM_A.
Then the address decoder of MPC 750_A makes BB_1
connect to SRAM_A, and BB_2 and BB_8 block the access
from any other CN. Next, MPC 750_B reads from
SRAM_A. While the address decoder of MPC 750_B makes
BB_1 disconnect from CPU Bus A, BB_2 and BB_3 are
connected to CPU Bus B by the control of the address
decoder. For the handshake operation between CN A and
CN B, after MPC750_A sets DONE_OP_B at the
completion of its operation, MPC750_B resets
DONE_OP_B and then reads SRAM_A. When MPC 750_B
finishes reading from SRAM_A, MPC 750_B sets
DONE_RV_B to “1”. MPC 750_A then resets

DONE_RV_B to zero and begins processing the next
packet.

3.2 Global Bus II Architecture (GBIIA)

 In GBIIA, all CNs share one global bus as shown in
Figure 2. Since the global bus can serve only one CN at a
time, an arbiter is required to allocate the global bus to a
CN when two or more CNs are contending for the global
bus. Currently the arbiter grants the global bus in a FIFO
fashion.
 Twenty four memory locations (double words) in
SRAM_D are reserved to store data ready flags. Data ready
flags are written by the previous CN in the pipelined
operation to indicate that its operation is complete, and data
is available for the next CN to read and use. The CNs keep
checking the data ready flags in SRAM_D and start their
operation when the appropriate data ready flag value
becomes one.
 The arbitration protocol and data ready flag technique
are also applied to the crossbar switch architecture.

Figure 2: The diagram of global bus II architecture

3.3 Bi-FIFO Bus Architecture (BFBA)

Figure 3: The diagram of Bi-FIFO bus architecture

 Figure 3 shows the Bi-FIFO bus architecture. The data
output by each CN can be exchanged through the Bi-FIFOs
located between CNs. Each CN has two ports to access the
Bi-FIFO as shown in Figure 3: the upper port, ZZ, and the
lower port, XX. One CN can push the result data after the

completion of the assigned operation to a Bi-FIFO, and the
adjacent CN can read the data from the Bi-FIFO. For this
operation, the user defines high and low threshold values
for Bi-FIFO operation. A high threshold value indicates the
Bi-FIFO is full while a low threshold value indicates the Bi-
FIFO is empty. An interrupt signal is generated to the next
CN when the data in a Bi-FIFO reaches the high threshold.
The interrupted CN reads the data from Bi-FIFO until the
data of the Bi-FIFO reaches the low threshold.
 The synchronization issue between communicating CNs
is resolved with the interrupt function and two flag
registers, TX_DONE and RV_DONE, for handshaking.
These two registers, plus the threshold registers, are
contained in the “REGISTERS” block in Figure 3.

3.4 Crossbar Switch Bus Architecture (CSBA)

 CSBA is an extended version of GBIIA. An array of
transmission gates provides paths between all CNs and
shared SRAMs as shown in Figure 4. In this architecture,
each CN is composed of an MPC 750 and a local software
SRAM (instruction cache). Each CN can access any shared
SRAM A, B, C, or D at the same time if there is no
competition for accessing the same SRAM block. When
memory competition for the same shared SRAM occurs, an
arbiter resolves this situation in a FIFO fashion.
 To solve the synchronization problem between
communicating CNs, SRAM_D has 24 data ready flags as
was done in GBIIA.

Figure 4: The diagram of crossbar switch bus architecture

3.5 IBM CoreConnect Bus Architecture (CCBA)

Figure 5: The diagram of IBM CoreConnect

 Finally, we utilize the IBM CoreConnect [4] standard on-
chip bus to compare the performance with our previous four
bus designs. Since we focus on high performance, we just
use the IBM CoreConnect Processor Local Bus (PLB) core
as shown in Figure 5. MPC 750s are connected to the PLB
through separate address, read, and write data buses with
many control signals. SRAMs are also attached to the PLB.
We designed the proper interfaces for MPC 750s and
SRAMs. The PLB has separate read and write data buses
similar to the approach of Winegarden [7]. We employ a
fixed priority arbitration scheme.
 We use the PLB core with 64-bit wide separate read and
write buses provided by IBM under the license agreement.

4. Application Example
4.1 OFDM Transmitter Application

Figure 6: The block diagram of an OFDM transmitter

 Five kinds of bus architectures for SoC were modeled
and simulated with four-compute nodes (CNs): GBIA,
GBIIA, BFBA, CSBA, and CCBA. For our first example,
we use a wireless communication protocol, Orthogonal
Frequency Division Multiplexing (OFDM)[9]. Specifically,
we utilize the OFDM transmitter on all five bus
architectures for their performance evaluation. Each CN
executes the assigned OFDM functions, and the computed
results are transferred to next CN as input data. The
required data transactions occur with different methods
according to the bus architecture. The bus performance is
heavily dependent upon the arbitration scheme and the
architecture to handle and reduce the bus contention among
CNs.
 OFDM employs several parallel channels with low bit
rates whose main lobes of carriers are orthogonal and side
lobes of carriers are overlapping one another. This is an
efficient way of carrying several sub channels in a fixed
bandwidth. The sub carriers are not separated by bandwidth
but rather overlap their side lobes with each other. The
frequency spacing between the sub carriers is arranged such
that they become orthogonal. A Fast Fourier Transform
(FFT) is used for digital modulation/demodulation of each
sub channel.
 Figure 6 shows the block diagram of an OFDM
transmitter. The subchannels are modulated by an Inverse
FFT (IFFT), and then a cyclic extension is added to avoid
inter symbol interference caused by the physical channel.

This extension is called the guard signal. From the physical
channel's point of view, the extended OFDM symbol
appears periodically.

Figure 7: OFDM data format

 Figure 7 shows the OFDM data format being transmitted.
The OFDM data starts with a train pulse. The train pulse
allows for the channel estimation and data synchronization
at the receiver side. Guard and data packets follow the train
pulse block. One packet of OFDM data we simulated here
contains a 128-complex valued sample and a 32-complex
valued guard signal. The guard data is usually a quarter of
the data block.

Figure 8: The flowchart of OFDM transmitter

 Figure 8 shows the flow chart of the OFDM transmitter.
The first three blocks are for train pulse generation and
symbol generation which maps the original data to a symbol
to be transmitted. The first three blocks (Initialization,
Train Pulse Generation, and Symbol Generation) in
Figure 8 are excluded in calculating throughput since these
routines are executed only once at the startup. The End of
Packet (EOP) loop controls data generation or data reading
from an external device, which generates data to be
transmitted. This EOP loop is repeated as many times as the
size of the data packet, meanwhile, the outer loop is also
repeated as many times as there are new data packets to be
transmitted. The generated data is fed into the modulation

block, which executes bit reversal, IFFT, normalizing, and
insertion of the guard signal, sequentially.
 The job assignment in each CN proceeds after careful
analysis of OFDM transmitter functions based on the
flowchart. Table 1 outlines the assignment in each CN. The
job on CN A seems heavier, but it is not the bottleneck of
system because the first three functions listed for CN A
(italicized in Table 1) are executed only once. Only data
generation, symbol mapping and bit reversal functions are
iterated in CN A. The job on CN B, IFFT, unfortunately is
difficult to split up due to the structure of the IFFT.

Table 1: The function assignment in each compute node

4.2 MPEG2 Decoder Application

 MPEG2 video is an ISO/IEC standard that specifies the
syntax and the semantics of encoded video bit streams.
These include parameters such as bit rates, picture sizes,
and resolutions that may be applied, and how the video bit
stream is decoded to reconstruct the picture.
 Figure 9 shows input video frames and their processing
on CNs. The video stream data is assumed as follows: M=1,
N=2, where M is a period either of intra frame (I) or of
predictive frame (P), and N is the number of pictures in a
group of pictures. Each frame size is specified with 16
pixels by 16 pixels to reduce the simulation time in this
application. All video frames that are input to CN A are
distributed to each CNs, and each decoded frame is handed
over to CN D at the end.

Figure 9: The input video frame of MPEG2

5. Experimental Results

 For the bus architecture modeling and simulation, we use
Seamless/CVE, the hardware/software co-simulator from
Mentor Graphics [10], together with VCS, the Verilog HDL

simulator from Synopsys [11]. Four MPC 750s from
Seamless are employed for CPUs.
 Each CN employs an MPC 750 with an 83.33 MHz CPU
external clock speed, SYSCLK. The maximum frequency
of SYSCLK, which dictates the maximum bus speed, is
limited to 83.33 MHz in the PowerPC Hardware
Specification (note that the internal clock speed can be
much faster, e.g., 400 MHz) [12]. However, our results are
equally applicable to much faster bus clock speeds.
 Due to the sequential execution of functions among CNs,
synchronization is required between communicating CNs.
In this experiment, handshaking using shared registers
between CNs, the generation of interrupt signals, and
memory-partitioning techniques are adopted for
synchronization.

5.1 Global BUS I Architecture (GBIA)

 Figure 10 exhibits an eight-packet OFDM transmitter
simulation waveform, and Figure 11 draws the pipelined
operation. Figures 10 and 11 show CN A, CN B, CN C and
CN D from top to bottom, respectively. There is a global
bus at the bottom of both Figures 10 and 11 demonstrating
the data transaction between CNs. After long processing of
the train pulse and symbol generation in CN A, the first
data packet is processed in CN A. CN B waits for the
completion of CN A. The IFFT on CN B is then executed
with the result from CN A in parallel with a new data
packet being processed by CN A. CN C and CN D proceed
with their assigned execution after receiving data from
previous CNs. In this fashion, the pipelined operation
achieves a significant increase in final data throughput. The
output data packet is generated every 403,000 cycles which
corresponds to 4.8360 ms/packet and 2.1175 Mbps.

Figure 10: The waveform of OFDM transmitter in GBIA

 Note that in Figure 11, “w” refers to writing data to
SRAM_{A, B, C, D} and “r” refers to reading data from
SRAM_{A, B, C, D}. Note the pipelined flow of packets
through the architecture.

 The MPEG2 decoder is also simulated in Seamless and
VCS. Each frame is decoded for 527,545 cycles which is
same as 63305 ms/frame and 0.4852 Mbps.

Figure 11: The pipeline operation of OFDM on GBIA

5.2 Global BUS II Architecture (GBIIA)

Figure 12: The pipeline operation of OFDM on GBIIA

 Figure 12 shows the pipelined operation of OFDM on
GBIIA. The bottleneck of the system arises from the IFFT
function on CN B after it reads the result from CN A. CN
C has to wait until CN B has completed the IFFT, and CN
D is delayed until CN C finishes. The second bus
transaction in the global bus at the bottom of Figure 11
shows that CN B and CN C utilize the bus alternately each
reading a word at a time. This does not degrade the
performance because each SRAM takes two cycles to
access data, leaving, in general operation by one CPU,
alternate cycles unused. An output data packet is generated
every 381,061 cycles which corresponds to 4.5727
ms/packet and 2.2394 Mbps.
 In MPEG2 application, each frame is decoded for
377,562 cycles which is equivalent to 4.5307 ms/frame, and
the throughput is 0.6780 Mbps.

5.3 Bi-FIFO Bus Architecture (BFBA)

 Figure 13 illustrates the pipelined operation of this
architecture and shows the four CN operations, CN A, CN
B, CN C, and CN D from top to bottom. Interrupt signals at
the bottom are generated when the data in a Bi-FIFO
reaches the high threshold so that the next CN starts to read
the Bi-FIFO. An output data packet is produced every

378,348 cycles, which is equivalent to 4.5402ms/packet and
2.2554 Mbps.

Figure 13: The pipeline operation of OFDM on BFBA

 In the MPEG2 application, each frame is decoded for
507,853 cycles which corresponds to 6.0942 ms/frame and
0.5041 Mbps.

5.4 Crossbar Switch Bus Architecture (CSBA)

Figure 14: The pipeline operation of OFDM on CSBA

 Figure 14 illustrates the pipelined operation of OFDM
executing on CSBA. Since IFFT causes the bottleneck in
the system performance, CSBA does not outperform any
other bus architectures as much as we expected. This is
because the pipelined operation is done at the function level
rather than the data block level. The distinct feature of this
architecture is the reduction in bus contention due to
multiple point-to-point data paths such that any CPU can
access any available SRAM on the crossbar switch. The
output data packet is generated every 380,199 cycles, which
is equivalent to 4.5624 ms/packet and 2.2444 Mbps.
 In the MPEG2 application, each frame is decoded for
377,548 cycles which is equivalent to 4.5306 ms/frame, and
the throughput is 0.6781 Mbps

5.5 IBM CoreConnect Bus Architecture (CCBA)

 Figure 15 shows the pipelined operation of a current
available standard on-chip bus architecture, CoreConnect
from IBM [4]. The throughput we have measured from the
simulation is 2.24156 Mbps. We use the 64 bit IBM

CoreConnect core with eight masters. This core requires an
arbitration overhead of 2 cycles due to the complexity of
the architecture. This architecture allows a data packet to be
produced every 380, 686 cycles, equivalent to 4.5682
ms/packet and 2.2416 Mbps.

Figure 15: The pipeline operation of OFDM on CoreConnect

 In the MPEG2 decoder, each frame is decoded for
378,141 cycles which is equivalent to 4.5382 ms/frame, and
the throughput is 0.6769 Mbps.

5.6 Comparison of Results

 Using OFDM with the same data input, Table 2 shows
the result of our performance comparison for the bus
architectures. As shown in Figure 16, all five bus
architectures have almost the same throughputs since the
OFDM application depends more on CPU processing time
than on bus architecture. The IFFT on CN B is the
bottleneck of the system.
 The performance difference between BFBA and CSBA
lies in the method of pointer increment. In BFBA, the Bi-
FIFO controller moves the pointer to the next memory
block, while in CSBA the pointer increment is done by the
application code. The pointer increment done by the
hardware is much faster than that by the software. Thus,
read and write times in BFBA are 2675 cycles per packet
less than those in CSBA, yielding a 0.0055 Mbps
throughput difference.
 The performance differences between GBIA and GBIIA
arise from the synchronization protocols. In GBIA, there is
a gap during the reading times from the next CN between
write and read in the current CN. This can be seen in the
gray “wait” boxes in Figure 11. Note especially the gray
“wait” boxes between a “w” and a “r” for CN B which are
not present for CN B in Figures 12, 13, 14, and 15. This
allows GBIIA to outperform about 0.0609 Mbps in
throughput.
 The performance of the on-chip standard bus,
CoreConnect from IBM, is in between the performance of
CSBA and GBIIA. Table 2 demonstrates that the
performance of a bus architecture does depend on the data
transfer paths among communication entities. However, the

performance improvement most heavily depends upon the
application and the distribution of the application algorithm
among the CNs.

 Table 2: The performance comparison of bus architectures

 in OFDM transmitter

Figure 16: The throughput comparison of bus architectures

 in OFDM transmitter

Table 3: The performance comparison of bus architectures
 in MPEG2 decoder

Figure 17: The throughput comparison of bus architectures
 In MPEG2 decoder

 In the MPEG2 decoder shown in Table 3 and Figure 17,
CSBA, GBIIA, and CCBA show better performance than
BFBA and GBIA. The reason is the former three bus

architectures support global resource access, but, in the
latter two, data has to be passed from CN A to each CN
sequentially to supply the global data to be processed in
each CN.
 In the above comparison, the performance of a bus
architecture is affected by the algorithm of application. For
example, BFBA shows the best performance for an
algorithm that has many local variables, small loops, and
strong data dependency between functions because they can
sequentially process functions with fast memory pointer
increments between CNs. OFDM is a good example for
these architectures. On the other hand, the MPEG2 decoder
is a good example of an algorithm that needs to access
many global variables, and has a big loop with its nested
loops and hierarchy data structure. For those kinds of
applications, CSBA, GBIIA and CCBA are the better
choices than either BFBA or GBIA.

6. Conclusion

 In this paper, we have presented five different
multiprocessor SoC bus architectures: GBIA, GBIIA,
BFBA, CSBA, and CCBA. We have compared
performance employing an OFDM transmitter and MPEG2
decoder application. Each architecture can significantly
increase performance with pipelined operation among CNs.
However, the overall system performance is limited by the
bottleneck of one CN executing IFFT in OFDM transmitter,
resulting in an unbalanced job distribution in the pipelined
operation.
 As seen in OFDM part of section 5.6, the Bi-FIFO and
Crossbar Switch bus architectures outperform GBIA,
GBIIA and CCBA although the performance difference is
not significant. We would expect an example with less
regularity to perform much better on GBIIA and CBSA
since GBIIA and CSBA allow direct communication
between non-adjacent CNs. In the MPEG2 decoder
application, CSBA, GBIIA, and CCBA outperform BFBA
and GBIA because they allow global resources access
unlike BFBA and GBIA. From the above comparisons, bus
architectures for a certain system must be determined by the
type of application, and we provide a certain level of
practical guidelines for the selection of a bus architecture in
section 5.6.
 The main contribution of this paper is the exploration of
high performance multiprocessor SoC bus architectures,

which has not been explored in previous papers [3-8].
For our future work, we intend to examine more diverse
applications, carry out more detailed studies on high speed
bus design including interconnect delay, and propose a new
bus architecture combining the best characteristics of the
five designs presented in this paper.

7. Acknowledgement

 This research is funded by the State of Georgia under the
Yamacraw initiative [13] and by NSF under INT-9973120,
CCR-9984808 and CCR-0082164.
 We also acknowledge software donations from Mentor
Graphics and Synopsys as well as hardware donations from
Sun and Intel.

8. References

[1] VITA-VME bus International Trade Association, http://www.
vita.com
[2] The PCI Special Interest Group, http://www.pcisig.com
[3] A. M. Rincon, W.R. Lee, and M. Slattery, “The Changing
Landscape of SoC Design,” Proceedings of IEEE 1999 Custom
Integrated Circuits Conference, May 1999, pp. 83-90.
[4] CoreConnect Bus Architecture, http://www.chips.ibm.com/
products/coreconnect
[5] P. J. Aldworth, “System-on-a-Chip Bus Architecture for
embedded Applications,” International Conference on Computer
Design (ICCD’99), 1999, pp. 297 –298.
[6] B. Cordan, “An Efficient Bus Architecture for System-on-a-
Chip Design,” Proceedings of IEEE Custom Integrated Circuits
Conference, May 1999, pp. 623-626.
[7] S. Winegarden, “Bus Architecture of a System on a Chip with
User Configurable System Logic,” IEEE Journal of Solid State
Circuits, March 2000, Vol. 35, No. 3, pp. 425-433.
[8] D. Wingard and A. Kurosawa, “Integration Architecture for
System-on-a-Chip Design,” Proceedings of IEEE 1998 Custom
Integrated Circuits Conference, May 1998, pp. 85-88.
[9] D. Kim and G. L. Stüber, ''Performance of Multiresolution
OFDM on Frequency-selective Fading Channels,'' IEEE
Transaction on Vehicular Technology, vol. 48, no. 5, pp. 1740-
1746, September 1999.
[10] Seamless co-verification, http://www.mentor.com/seamless
[11] VCS data sheet, http://www.synopsys.com/products/
simulation/vcs_ds.html
[12] MPC 750A RISC Microprocessor Hardware Specification,
http://www.mot.com/SPS/PowerPC/library/750_hs.pdf
[13] Yamacraw, http://www.yamacraw.org

