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Abstract 

    The performance of a system, especially a 
multiprocessor system, heavily depends upon the efficiency 
of its bus architecture. This paper presents a methodology 
to generate a custom bus system for a multiprocessor 
System-on-a-Chip (SoC).  Our bus synthesis tool (BusSyn) 
uses this methodology to generate five different bus 
systems as examples: Bi-FIFO Bus Architecture (BFBA), 
Global Bus Architecture Version I (GBAVI), Global Bus 
Architecture Version III (GBAVIII), Hybrid bus 
architecture (Hybrid) and Split Bus Architecture (SplitBA).  
We verify and evaluate the performance of each bus system 
in the context of two applications: an Orthogonal 
Frequency Division Multiplexing (OFDM) wireless 
transmitter and an MPEG2 decoder.  This methodology 
gives the designer a great benefit in fast design space 
exploration of bus architectures across a variety of 
performance impacting factors such as bus types, 
processor types and software programming style.  In this 
paper, we show that BusSyn can generate buses that  
achieve superior performance when compared to a simple 
General Global Bus Architecture (GGBA) (e.g., 16.44% 
performance improvement in the case of OFDM 
transmitter) or when compared to the CoreConnect Bus 
Architecture (CCBA) (e.g., 15.54% peformance 
improvement in the case of MPEG2 decoder).  In addition, 
the bus architecture generated by BusSyn is designed in a 
matter of seconds instead of weeks for the hand design of a 
custom bus system. 

1. Introduction 
    System-on-a-Chip (SoC) opens up new opportunities for 
hardware/software codesign.  For example, SoC allows the 
designer to overcome some performance drawbacks of 
Printed Circuit Boards (PCBs) by implementing on a single 
chip many or most of the chips previously on a PCB.  In 
particular, single-chip integration allows one to take 
advantage of increased bus speeds and widths.  Thus, an 
eff icient bus architecture with optimal arbitration for 
reducing contention plays an important role in maximizing 
the performance of an SoC. 
    One issue for an SoC designer to consider is how to 
exchange data among the Processing Elements (PEs) in the 
SoC, e.g., should there be one bus or multiple buses and 
where should memory elements be placed?  A second issue 
for an SoC designer to consider is how to easily and 
quickly design a bus system considering the increasing 

complexity of on-chip bus systems and in the context of 
ever shortening time to market demands.  These issues 
motivate the introduction of a design automation tool that 
is capable of generating customized SoC bus systems in 
Verilog HDL code to speed up a user’s design space 
exploration in search of a high performance bus system. 
    This paper presents a methodology to generate custom 
bus systems using Intellectual Property (IP) cores for a 
multiprocessor SoC.  Using this methodology, five 
different bus systems are generated as examples in 
synthesizable Verilog HDL: Bi-FIFO Bus Architecture 
(BFBA), Global Bus Architecture Version I (GBAVI), 
Global Bus Architecture Version III ( GBAVIII) , Hybrid 
bus architecture (Hybrid) that combines BFBA and 
GBAVIII , and Split Bus Architecture (SplitBA).  Bus 
system performance is evaluated using two applications: an 
Orthogonal Frequency Division Multiplexing (OFDM) 
wireless transmitter and an MPEG2 decoder.  We will 
show that our Bus Synthesis (BusSyn) tool can eff iciently 
generate a large variety of bus systems in a matter of 
seconds (as opposed to weeks of design effort to put 
together each bus system by hand).  Furthermore, we will 
compare the performance with a simple General Global 
Bus Architecture (GGBA) and an industry standard on-
chip bus (CoreConnect from IBM [1]), and show a 16% 
improvement with a customized bus architecture. 

2. Related Work 
    Most SoC bus designs are based on Intellectual Property 
(IP) cores stitched together with various forms of data, 
address and control li nks.  There are several efforts to 
make SoC bus systems from industry: Coreconnect from 
IBM [1] and AMBA from ARM [2].  FastForward for 
Sili conBackplane [3] and Connection Kit for 
CoreFrame [4] allow a designer to integrate IP modules 
and result in reduced design time for a bus system for an 
SoC.  We take GGBA and CoreConnect as representative 
examples of these industry buses.    
    Gasteier et al. [5] describe the automatic generation of a 
communication topology using scheduling of data transfer 
operations to reduce the cost of a bus architecture.  
However, they only show support for a single type of bus 
topology (a single global bus topology).  We, on the other 
hand, support multiple bus types. 
    Bergamaschi et al. [6] present automating the design of 
SoC using IP cores connected via CoreConnect.  In their 
methodology for assembling IP, their approach checks the 



 

compatibilit y of IP inputs/outputs and generates wires to 
connect the IP cores.  Again, we, on the other hand, 
support a wider variety of bus types and architectures than 
CoreConnect. 
    Lyonnard et al. [7] introduce a design flow for the 
generation of application-specific multiprocessor 
architecture.  Nicolescu et al. [8] and Gharsalli et al. [9] 
present a component-based design flow for a 
heterogeneous and multicore SoC, where the flow 
introduces a systematic method of wrapper generation for 
multicore SoC design.  However, in the communication 
network design [7, 8 and 9], the flows presented only 
supports generation of a single bus type for the system 
(e.g., a shared bus or a point-to-point interconnection).   
We provide more flexible bus architecture templates such 
as supporting multiple and heterogeneous bus architectures 
(e.g., GBAVI, GBAVIII , BFBA, Hybrid, and SplitBA) in a 
system, and various optimized wrappers (e.g., CPU- bus 
interface, memory-bus interface and generic bus interface) 
generated or extracted from a module library file for the 
ease of interface and integration between modules.  

3. Terminology 
    Before proceeding to discuss our Bus Synthesis tool 
(BusSyn), we first explain some of the terms we will be 
using to describe the different components of a bus 
architecture. 
Definitions 
1) Processing Element (PE): hardware that performs 

algorithmic processing – usually a CPU but may also be 
dedicated or reconfigurable logic. Currently, we 
support two types: MPC750 and MPC755. 

2) Bus Bridge (BB): a controllable connection point 
between two buses – if the BB is enabled, the two buses 
are fully connected, otherwise the two buses are 
disconnected. 

3) Global Bus Architecture (GBA): a type of bus 
architecture where BBs may be used to connect 
different sections of the bus. 

4) Bi-FIFO Bus Architecture (BFBA): a type of bus 
architecture where bidirectional FIFOs are used to 
transmit and receive data between adjacent PEs. 

5) Segment of Bus (SB): a contiguous bus (no BBs) 
consisting of address, data, and control (e.g., read 
enable, write enable, request, and acknowledge) wires 
specific to a particular bus type (in our case, GBA or 
BFBA). 

6) Bus Access Node (BAN): processing or memory 
hardware together with associated bus access hardware 
and SB(s). 

7) Module: one of BB, SB, Arbiter, SRAM or IL (in this 
paper, a PE is not a Module but instead is an IP core), 
where IL is Interface Logic that will  be explained in 
more detail i n Section 4.  Note that it is possible to 
extend the definition of Module to include newly 

designed hardware units.  For this paper, however, the 
definition given for Module suff ices. 

8) Bus Subsystem: one or more BANs connected together 
and using the same bus architecture or the combination 
of different bus architectures (in our case, either GBA, 
BFBA, or the combination of GBA and BFBA). 

9) Bus System: one or more Bus Subsystems connected 
together. 

4. Methodology for Bus System Generation 
4.1. Bus System Structure 
    First, we will describe in more detail the bus 
components 1) through 9) defined in Section 3.  Figure 1 
shows a hierarchical example of a multiprocessor Bus 
System: a Bus System has Bus Subsystems, each Bus 
Subsystem includes BANs that are composed of PEs 
(MPC755s) and Modules, and the Bus Subsystems are 
connected with a Bus Bridge.  The hierarchical definition 
allows a Bus System to have flexible and scaleable bus 
architecture.  In addition to PEs (e.g., MPC755) and 
memories (e.g., SRAM) in the BANs of Figure 1, there are 
more Modules specified as Interface Logics (ILs): CPU or 
PE to Bus Interface (CBI), Memory to Bus Interface 
(MBI), and Generic Bus Interface (GBI).  With these 
interface Modules, different BANs can have different types 
of PEs and memories because CBI and MBI Modules 
adapt the interface between the PE or memory and local 
bus respectively.  Similarly, GBI also gives flexibilit y in 
being able to select various types of buses in a Bus 
Subsystem: GBA (GBAVI or GBAVIII , to be described in 
Section 4.2) and BFBA.  Each BAN can access any other 
BAN’s memory through the SBs.  The repetition of the 
BANs makes a Bus Subsystem be a scalable structure and 
lets the multiprocessor Bus System be implemented fast. 

 
Figure 1. Bus System Example 

    When a Bus Subsystem has a global resource such as a 
large global memory to be accessed from all BANs, the 
resource is also defined as part of a BAN: for example, the 
large SRAM in BAN G in Figure 1.  

4.2. Bus System Examples 
    In this section, we show five custom Bus Systems to be 
generated by BusSyn automatically: BFBA, GBAVI, 
GBAVIII, Hybrid, and SplitBA.  All Bus System examples 



 

shown in Figures 2, 3, 4 and 5 have four processors and 
32MB total of memory (all examples have approximately 
the same chip area because the area of the bus logic and 
wires is much smaller than CPU and memory area); 
however, BusSyn can generate a Bus System having any 
number of processors and any sizes of memories according 
to the user input that wil l be described in Section 4.3.2.  
    First, we give an explanation of the five sample custom 
bus architectures generated by BusSyn in this paper 
(BusSyn can generate a very large number of custom bus 
architectures).  GBAVI shown in Figure 2(a) is a kind of 
global bus architecture (GBA), but the global bus is 
segmented with BBs separating each BAN.  As shown in 
Figure 2(b), BFBA has a Bi-FIFO between adjacent BANs.  
This design is similar to some commercially available 
multiprocessor PCBs such as the Quad TMS320C6701 
Processor VME Board from Pentek [10].  The operations 
of GBAVI and BFBA are discussed in detail i n [15]. 

 
Figure 2. Diagrams of GBAVI and BFBA 

 
Figure 3. Diagrams of GBAVIII and Hybrid 

    GBAVIII shown in Figure 3(a) is a global bus 
architecture (GBA) having a local program and data 
memory, a global arbiter, and a global memory.   
    One example of a possible Bus System specified by 
Hybrid is the combination of BFBA and GBAVIII , as 
shown in Figure 3(b).  This combination allows this bus 
architecture to have advantages of both the BFBA and the 

GBAVIII architectures: supplying a Bi-FIFO data transfer 
method between adjacent BANs and having a global 
memory area that can be accessed from all BANs.  

 
Figure 4. Diagram of SplitBA 

    Figure 4 shows SplitBA that is composed of two Bus 
Subsystems that have two MPC755s and a global memory 
respectively.  The Bus Subsystems are connected through a 
bus bridge to exchange data between them. 
    GGBA and CCBA are shown in Figure 5. These bus 
architectures are a baseline for performance comparisons 
with other Bus Systems. 

 
Figure 5. Diagrams of GGBA and CCBA 

4.3. Bus System Generation 
4.3.1. Libraries for Module Repository and Wiring.  
    BusSyn uses two libraries.  One is a Module Library that 
is used for Modules to be configured in a BAN, and the 
other is a Wire Library for connecting the Modules in a 
BAN and for connecting the BANs in a Bus Subsystem.   
    The Module Library describes the input/output ports and 
behavior of each module in Register Transfer Level (RTL) 
Verilog.  The library, for example, contains the following 
components: MPC755_IF as a processor core interface, 
MBI_SRAM for interface between memory and bus, 
SBFBA for a segment of bus of BFBA and GBI_BFBA for 
a generic bus interface. 
    The Wire Library contains all possible combinations of 
legal connections between bus elements (e.g., between 
Modules in each BAN and between BANs in each Bus 
Subsystem).  This library is written in ASCII format as 
shown in Figure 6, and there are several fields to specify 
connection information: wire name (w_name), wire width 
(w_width), module x name (mx_name), port name in 
module x (mx_pname), most significant bit (mx_wmsb) 
and least significant bit(mx_wlsb), where the ‘x’ is 1 or 2.  
Example 1 shows how to use the Wire Library. 

 
Figure 6. The Format in Wire Library 

Example 1: As an example of wire connection in a BAN, 
MBI_SRAM supplies an address to SRAM_A in BAN A of 
Figure 2(b) BFBA.  To specify, according to Figure 6, 20-bit 



 

address wire ‘w_addr[19:0]’ between SRAM_A and MBI_SRAM, 
the wire information in the Wire Library is as follows:  
%wire ban_bfba 
w_addr 20 SRAM_A sram_addr 19 0 MBI_SRAM addr 22 3 
%endwire   
    Another example of a wire connection between BANs in a Bus 
Subsystem is data bus wire ‘w_data[63:0]’ between BAN A and 
BAN B in Figure 2(b).  To indicate the wire, the wire is specified as 
follows: 
%wire subsys_bfba 
w_data 64 BAN fifo_dq_dn 63 0 BAN fifo_dq_up 63 0 
%endwire 
 
4.3.2. The Bus System Generation Sequence.  
    To design a custom bus, the user first inputs options that 
are described in the right hand side box of Figure 7.  These 
options are input constraints used to generate a custom Bus 
System.  The input sequence of user options is described in 
more detail in [15].  

 
Figure 7. The Bus System Generation Sequence 

 
Figure 8. Pseudo Code for BAN Generation  

    Figure 8 shows the pseudo code for BAN generation 
after the user options are specified.  In Step 1 of the code, 
Modules required in each BAN are either extracted from 
the Module Library or generated.  After extracting and 
generating the Modules for a BAN, wire information from 
the Wire Library is read in Step 2, and port information 
from each required Module is read in Step 3.  Step 4 of the 
code uses the wire and port information not only to decide 
required wire connections Module-to-Module and Module-
to-port but also to obtain exact I/O ports of the BAN to be 
generated, where both ends of a wire are examined if the 
wire needs to be connected to a Module and/or to a port of 
the BAN.  Finally, in Step 5, BANGen() writes Verilog 
HDL code after instantiating the Modules and wiring the 

instantiated Modules, based on wires, wire connections and 
the ports that are decided from the previous Steps.  
Example 2: Consider the wire ‘w_addr’ described in Example 1.  
For BAN A of BFBA shown in Figure 2(b), the required Modules 
are as follows: MPC755 Interface, MBI_SRAM, REGISTERS, 
CBI MPC755, SRAM_A and Bi-FIFO. Step 1 of BANGen() in 
Figure 8 extracts the first three Modules (MPC755 Interface, 
MBI_SRAM and REGISTERS), and the others are generated 
according to the user options: for example, SRAM parameters for 
SRAM_A.  In Step 2 of Figure 8, BANGen() reads wire information 
(e.g., w_name ‘w_addr’, mx_name ‘SRAM_A’ and mx_pname 
‘sram_addr’ in the format of Figure 6) from the Wire Library.  In 
Step 3 of Figure 8, BANGen() obtains port and Module information 
(e.g, ‘sram_addr’ and ‘SRAM_A’) from each Module.  Next, during 
Step 4, BANGen() compares the wire information, the port and 
Module information to decide which wires (e.g., ‘w_addr’) need to 
be connected between the Modules.  Finally, in Step 5 BANGen() 
instantiates the required Modules with the decided wires and 
writes Verilog HDL code describing BAN A.  
 
    Bus Subsystem generation is done through an 
instantiation procedure of generating BANs according to 
the Bus Subsystem Property and a wiring procedure to 
integrate the BANs together.  The pseudo code of the 
algorithm for the Bus Subsystem generation is shown in 
Figure 9.  In Step 1 and Step 2 of Figure 9, wire 
information is read from the Wire Library, and port 
information is obtained from each BAN to be generated.  
Step 3 compares the ports and the wires so that required 
wires and wire connections between BANs are decided for 
a Bus Subsystem.  In Step 4, SubSysGen() writes Verilog 
HDL code after instantiation of required BANs and wiring 
the instantiated BANs, based on the wires and wire 
connections that are decided in the previous Steps. 

 
Figure 9. Pseudo Code for Bus Subsystem Generation 

Example 3: Consider the wire ‘w_data’ and the port ‘ fifo_dq_up’ 
described in Example 1.  To generate Figure 2(b) BFBA’s Bus 
Subsystem (which, as shown in Figure 2(b), is also a Bus 
System), in Step 2 of Figure 9 SubSysGen() reads wire 
information (e.g., ‘w_data’ and ‘ fifo_dq_up’) from the Wire Library, 
obtains port information (e.g., ‘ fifo_dq_up’) from BAN A generated 
in Example 2, compares the port information with the wire 
information, and decides which wires (e.g., ‘w_data’) will be 
connected to the appropriate ports (e.g., ‘ fifo_dq_up’) of BAN A in 
Step 3.  With the same method, in Step 3 SubSysGen() decides 
wires (e.g., ‘w_data’) to be connected to the appropriate ports 
(e.g., ‘ fifo_dq_dn’) of BANs B, C and D.  Finally, SubSysGen() 
instantiates BANs A, B, C and D with the wires and wire 
connections that are decided upon in Step 3 of Figure 9 and writes 
Verilog HDL code describing the Bus Subsystem in Step 4.   
 
    A Bus Subsystem can become a Bus System if the user 
wants a single bus architecture for the entire chip instead of 
multiple bus architectures in the SoC. 



 

    A Bus System is made by using BBs to connect 
generated Bus Subsystems.  As we have explained 
throughout this section, BusSyn can generate Modules as 
well as do a syntactic translation from high-level input 
description based on the user options in order to output 
synthesizable Verilog HDL code for a multiprocessor SoC. 

5. Application Examples 
    Five kinds of bus architectures for a multiprocessor SoC 
were generated using BusSyn and then simulated to 
evaluate the performance with two applications: MPEG2 
decoder [11] and Orthogonal Frequency Division 
Multiplexing (OFDM) [12], which is a wireless 
communication protocol. 

 
Table 1. Function Assignment for each BAN in OFDM 

 
Figure 10. Software Programming Style in OFDM 

    Table 1 shows a list of functions in OFDM, and 
Figure 10 describes the computation in each processor 
according to programming style: pipelined parallel 
algorithm (PPA) and functional parallel algorithm (FPA). 
We programmed the OFDM transmitter algorithm in both 
PPA style and FPA style to see how the styles affect 
performance.  The FPA style proved to be faster in most 
cases.  One packet of OFDM data here contains a 2048-
complex valued sample and a 512-complex valued guard 
signal.  For the MPEG2 decoder, we exclusively used the 
FPA style because it yielded the fastest results.  We used a 
very small picture (16 pixels x 16 pixels) because of the 
limitation of simulation time. The details of these 
applications are in [15].  

6. Experimental Results 
6.1. Experimental Environment 
    For the Bus System simulation, we use Seamless/CVE, a 
hardware/software co-simulation tool from Mentor 
Graphics [13], together with VCS, a Verilog HDL 
simulator from Synopsys [14].  We use the Synopsys 
Design Compiler to synthesize the Verilog HDL code to 
logic gates.  More environment detail , including processors 
we used, is available in a technical report [15]. 

6.2. Comparison of Results 
    With the generated Bus Systems, Figures 2, 3 and 4, and 
hand-designed examples of GGBA and CCBA (shown in 

Figure 5), we evaluate the performance and verify the 
operation of each Bus System with the OFDM transmitter 
and MPEG2 decoder.  

 
Table 2. Evaluation Results in OFDM Transmitter 

    Table 2 shows the results of our evaluation using 
OFDM. The operation of BFBA and GBAVI is well 
matched to the PPA style because BFBA and GBAVI only 
have data transfer mechanisms between BANs instead of 
having a memory shared among all BANs.  SplitBA is 
composed of two Bus Subsystems connected with a Bus 
Bridge, and the two Bus Subsystems operate 
independently.  So, in SplitBA, it is more reasonable to use 
the FPA style.  SplitBA (Case 7 in Table 2) using the FPA 
style shows the best performance among the Bus Systems 
in our example: OFDM transmission reaches a rate of 
5.1132 Mbps, 16.44% faster than GGBA which we take as 
representative of a typical commercial bus.  We can see in 
Table 2 that the throughput of each Bus System is 
significantly affected by the bus types and programming 
style (PPA vs. FPA):   
(1) In software programming style, FPA beats PPA in the 

OFDM transmitter application (e.g., Case 3 vs. 4 or 
Case 8 vs. 9 in Table 2).  The reason is that, for OFDM, 
FPA balances the computational load better than PPA. 

(2) Bus Systems using a shared memory for program and 
local data (e.g., GGBA) require more memory 
arbitration time than in Bus Systems having separate 
memories for program and local data for each BAN 
(e.g., GBAVIII) . This arbitration time difference 
explains why GBAVIII outperforms GGBA. 

(3) SplitBA relieves bus traff ic congestion due to shared 
memory requests from each BAN. With this reason, 
SplitBA beats GGBA in our example (Case 7 vs. 8). 

(4) A fast data transfer method between BANs such as Bi-
FIFO of BFBA contributes to the performance 
improvement observed for the PPA style (e.g., Case 1 > 
Case 4 > Case 9 > Case 2, in throughput).  

    In the MPEG2 decoder results shown in Table 3, Hybrid 
(Case 13) shows the best performance because Hybrid 
allows the use of both BFBA and GBAVIII ’s features such 
as fast data transactions between adjacent BANs using Bi-
FIFOs and global data accesses in global memory from all 
BANs. Above all , the reason Hybrid and GBAVIII 
outperform CCBA is faster arbitration time in read 
operations (3 cycles as compared to 5 in CCBA). In 
Table 3, BFBA and GBAVI perform poorly because data 



 

has to be passed from BAN A to each BAN sequentially to 
supply the global data to be processed in each BAN.  The 
end result is that Hybrid, generated by BusSyn, 
outperforms CCBA by 15.54% in this example. 

 
Table 3. Evaluation Results in MPEG2 Decoder 

 
Table 4. Generation Time and Gate Count in the 

                     Generated Bus Systems 
    Table 4 shows the generation time of the Bus Systems 
generated using BusSyn and gate counts of the Bus System 
logic after synthesizing the logic using the LEDA TSMC 
0.25µm standard cell li brary with the Synopsys Design 
Compiler.  Since our goal is cycle accurate 
hardware/software cosimulation, we do not include layout 
parameters such as wire area in our area estimates.  Thus, 
after using our tool, extra work is required to obtain layout 
accurate area and timing estimates for the final chip 
implementation.  BusSyn can generate a Bus System 
having any number of processors, but the table shows Bus 
Systems having a maximum of 24 processors.  In the 
generation time column, all Bus Systems shown in Table 4 
take less than one second to generate using BusSyn.  Our 
experience is that porting GGBA or CCBA to our 
application examples, on the other hand, took about one 
week.  The one-week was spent understanding signal 
functions of the processors and the modeling of required 
Modules and their interfaces.  Note that BusSyn achieves 
performance superior to the hand design of GGBA and 
CCBA, but the custom bus architecture is designed in a 
matter of seconds instead of weeks.  This means we have a 
major benefit that is fast design space exploration of bus 
architectures across performance impacting factors such as 
bus types, processor types and software programming style 
resulting in a system having high performance.  This goal 
is accomplished through BusSyn, which leads the user to 
easily design Bus Systems in a matter of seconds.  

7. Conclusion 
    In this paper, we have described a methodology to 
generate custom Bus Systems for multiprocessor SoC 
designs.  BusSyn, a bus generation tool using this 
methodology, generates five different Bus Systems as 
examples: BFBA, GBAVI, GBAVIII , Hybrid and SplitBA.  
In Section 6, the Bus Systems are evaluated in performance 
and are verified in operation with two applications: OFDM 

transmitter and MPEG2 decoder.  Our methodology gives 
us a great benefit in fast design space exploration of bus 
architectures across the performance impacting factors 
such as bus types and software programming style.  We 
showed that BusSyn achieves performance better than the 
hand design of a simple GGBA and CCBA, but in a matter 
of seconds instead of weeks. 
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