Automated Bus Generation for Multiprocessor SoC Design

Kyeong Keol Ryu and Vincent J. Moorey I
Georgia Ingtitute of Tedhnology
Eledricd and Computer Engineeing, Atlanta, GA 30332 USA
{ kkryu, mooney} @ecegatech.edu

Abstract

The performance of a system, especially a
multiprocessor system, heavily depends upon the efficiency
of its bus architecture. This paper presents a methodology
to generate a custom bus system for a multiprocessor
System-on-a-Chip (SoC). Our bus synthesis tool (BusSyn)
uses this methodology to generate five different bus
systems as examples: Bi-FIFO Bus Architecture (BFBA),
Global Bus Architecture Version | (GBAVI), Global Bus
Architecture Version Il (GBAVIII), Hybrid bus
architecture (Hybrid) and Split Bus Architecture (SplitBA).
We verify and evaluate the performance of each bus system
in the context of two applications: an Orthogonal
Frequency Divison Multiplexing (OFDM) wireless
transmitter and an MPEG2 decoder. This methodology
gives the designer a great benefit in fast design space
exploration of bus architectures across a variety of
performance impacting factors such as bus types,
processor types and software programming style. In this
paper, we show that BusSyn can generate buses that
achieve superior performance when compared to a simple
General Global Bus Architecture (GGBA) (e.g., 16.44%
performance improvement in the case of OFDM
transmitter) or when compared to the CoreConnect Bus
Architecture (CCBA) (eq., 1554% peformance
improvement in the case of MPEG2 decoder). In addition,
the bus architecture generated by BusSyn is designed in a
matter of seconds instead of weeks for the hand design of a
custom bus system.

1. Introduction

System-on-a-Chip (SoC) opens up hew oppatunities for
hardware/software adesign. For example, SoC all ows the
designer to overcome some performance drawbadks of
Printed Circuit Boards (PCBs) by implementing on asingle
chip many or most of the dcips previously on a PCB. In
particular, single-chip integration alows one to take
advantage of increased bus geeds and widths. Thus, an
efficient bus architedure with optimal arbitration for
reducing contention plays an important role in maximizing
the performance of an SoC.

One iswue for an SoC designer to consider is how to
exchange data anong the Processng Elements (PES) in the
SoC, e.g., should there be one bus or multiple buses and
where should memory elements be placed? A secmnd issue
for an SoC designer to consider is how to easly and
quickly design a bus g/stem considering the increasing

complexity of on-chip bus g/stems and in the mntext of
ever shortening time to market demands. These isales
motivate the introduction of a design automation tool that
is capable of generating customized SoC bus g/stems in
Verilog HDL code to speed up a user's design space
exploration in search of a high performance bus g/stem.
This paper presents a methoddogy to generate austom
bus g/stems using Intellecdual Property (IP) cores for a
multiprocesor SoC. Using this methoddogy, five
different bus gstems are generated as examples in
synthesizable Verilog HDL: Bi-FIFO Bus Architedure
(BFBA), Global Bus Architedure Version | (GBAVI),
Global Bus Architedure Version Ill (GBAVIII), Hybrid
bus architedure (Hybrid) that combines BFBA and
GBAVIIl, and Split Bus Architedure (SplitBA). Bus
system performanceis evaluated using two applications: an
Orthogonal Frequency Division Multiplexing (OFDM)
wireless transmitter and an MPEG2 dewmder. We will
show that our Bus Synthesis (BusSyn) todl can efficiently
generate a large variety of bus g/stems in a matter of
semnds (as oppaed to weeks of design effort to put
together ead bus g/stem by hand). Furthermore, we will
compare the performance with a simple General Global
Bus Architedure (GGBA) and an industry standard on-
chip bus (CoreConred from IBM [1]), and show a 16%
improvement with a aistomized bus architedure.

2. Related Work

Most SoC bus designs are based on Intellecual Property
(IP) cores ditched together with various forms of data,
address and control links. There ae severa efforts to
make SoC bus g/stems from industry: Coremnned from
IBM [1] and AMBA from ARM [2]. FastForward for
SiliconBadkplane [3] and Conredion Kit for
CoreFrame[4] alow a designer to integrate IP modules
and result in reduced design time for a bus g/stem for an
SoC. We take GGBA and CoreConned as representative
examples of these industry buses.

Gasteier et al. [5] describe the aittomatic generation of a
communication topdogy using scheduling of data transfer
operations to reduce the wst of a bus architedure.
However, they only show suppart for a single type of bus
topdogy (a single global bus topdogy). We, on the other
hand, suppart multi ple bus types.

Bergamaschi et al. [6] present automating the design of
SoC using IP cores conneded via CoreConned. In their
methoddogy for asseembling IP, their approach chedks the

compatibility of 1P inputs/outputs and generates wires to
conned the IP cores. Agan, we, on the other hand,
support a wider variety of bus types and architecures than
CoreConned.

Lyonnard et al. [7] introduce adesign flow for the
generation of applicaion-spedfic multiprocessor
architedure. Nicolescu et al. [8] and Gharsdlli et al. [9]
present a mponent-based design flow for a
heterogeneous and multicore SoC, where the flow
introduces a systematic method d wrapper generation for
multicore SoC design. However, in the communication
network design [7, 8 and 9], the flows presented only
supparts generation of a single bus type for the system
(e.g., a shared bus or a paint-to-point interconnedion).
We provide more flexible bus architedure templates such
as upparting multiple and heterogeneous bus architedures
(e.g., GBAVI, GBAVIII, BFBA, Hybrid, and SplitBA) ina
system, and various optimized wrappers (e.g., CPU- bus
interface memory-bus interface ad generic bus interface
generated or extraded from a module library file for the
ease of interface ad integration between modules.

3. Terminology

Before procealing to discuss our Bus Synthesis todl
(BusSyn), we first explain some of the terms we will be
using to describe the different components of a bus
architedure.

Definitions

1) Processng Element (PE): hardware that performs
agorithmic processng — usually a CPU but may also be
dedicaed o rewmnfigurable logic. Currently, we
suppart two types: MPC750and MPC755.

2) Bus Bridge (BB): a ontrollable wnnedion point
between two buses— if the BB is enabled, the two buses
are fully conneded, otherwise the two buses are
disconneded.

3) Globa Bus Architedure (GBA): a type of bus
architedure where BBs may be used to conned
different sedions of the bus.

4) Bi-FIFO Bus Architedure (BFBA): a type of bus
architedure where bidirediona FIFOs are used to
transmit and receve data between adjacent PEs.

5) Segment of Bus (SB): a wntiguous bus (no BBS)
consisting of address data, and control (e.g., rea
enable, write enable, request, and adknowledge) wires
spedfic to a particular bus type (in our case, GBA or
BFBA).

6) Bus Access Node (BAN): processng or memory
hardware together with assciated bus access hardware
and SB(s).

7) Module: one of BB, SB, Arbiter, SRAM or IL (in this
paper, a PE is not a Module but instead is an IP core),
where IL is Interface Logic that will be explained in
more detail in Sedion 4. Note that it is possble to
extend the definition of Module to include newly

designed hardware units. For this paper, however, the
definition gven for Module suffices.

8) Bus Subsystem: one or more BANSs conneded together
and using the same bus architecure or the cmbination
of different bus architedures (in our case, either GBA,
BFBA, or the combination of GBA and BFBA).

9) Bus System: one or more Bus Subsystems conneded
together.

4. Methodology for Bus System Generation
4.1. Bus System Structure

First, we will describe in more detail the bus
components 1) through 9) defined in Sedion 3. Figure 1
shows a hierarchicd example of a multiprocesoor Bus
System: a Bus System has Bus Subsystems, ead Bus
Subsystem includes BANs that are composed of PEs
(MPC755%) and Modules, and the Bus Subsystems are
conneded with a Bus Bridge. The hierarchica definition
alows a Bus System to have flexible and scdeable bus
architedure. In addition to PEs (e.g., MPC755 and
memories (e.g., SRAM) in the BANs of Figure 1, there ae
more Modules gedfied as InterfaceLogics (ILs): CPU or
PE to Bus Interface (CBI), Memory to Bus Interface
(MBI), and Generic Bus Interface (GBI). With these
interfaceModules, different BANs can have different types
of PEs and memories because CBI and MBI Modules
adapt the interface between the PE or memory and locd
bus respedively. Similarly, GBI aso gives flexibility in
being able to seled various types of buses in a Bus
Subsystem: GBA (GBAVI or GBAVIII, to be described in
Sedion 4.2) and BFBA. Ead BAN can accessany other
BAN’s memory through the SBs. The repetition of the
BANSs makes a Bus Subsystem be a scdable structure and

lets the multi processor Bus System be implemented fast.
Bus System

Bus Subsystem 1

Bus Subsystem 2

BAM: Bus Access Node, IL: Interface Logic, SB: Segment of Bus, BB Bus Pridge, MBI Memory-Bus Interface,
CBI: CPU/PE-Bus Interface, GBI Generic Bus Interface, ABL: Arbiter-Bus Interface,

Figure 1. Bus System Example

When a Bus Subsystem has a global resource such as a
large global memory to be accessed from al BANS, the
resource is also defined as part of a BAN: for example, the
large SRAM in BAN G in Figure 1.

4.2. Bus System Examples

In this section, we show five custom Bus Systems to be
generated by BusSyn automatically: BFBA, GBAVI,
GBAVIII, Hybrid, and SplitBA. All Bus System examples

shown in Figures 2, 3, 4 and 5 have four procesors and
32MB total of memory (all examples have approximately
the same dip areabecause the aeaof the bus logic and
wires is much smaler than CPU and memory ared);
however, BusSyn can generate aBus System having any
number of procesors and any sizes of memories acwrding
to the user input that will be described in Sedion 4.3.2.

First, we give an explanation of the five sample aistom
bus architedures generated by BusSyn in this paper
(BusSyn can generate avery large number of custom bus
architedures). GBAVI shown in Figure 2(a) is a kind of
global bus architedure (GBA), but the global bus is
segmented with BBs sparating eatct BAN. As down in
Figure 2(b), BFBA has a Bi-FIFO between adjacent BANSs.
This design is smilar to some @mmercidly available
multiprocessor PCBs such as the Quad TMS320C6701
Processor VME Board from Pentek [10]. The operations
of GBAVI and BFBA are discussed in detail in [15]

BAN K
MPC755 _A SR_AM A

MEI GISTERS| |BI-FIFO_A
MPCISS SRA

T BAN B BAN B
M:PC'lsﬁ :] SR.AM _E
Frome] iy *““”“”‘ [rres]
Mpc755 SRAM WC?SS SRAM

pan ¢
MPC?SS < SRAM_C
b

BAN C
mpcyss_c| | sram c

foar o
MPC?S5_D SRAM_D MPC7?55_D| | sRAM D BARD
re T -
GISTERS EE & T Mem GISTERS| |BI-FIFO_D
wrcrss : i] f FE—‘: 3
BE_7

T = SEeT =1 w

[Note] BB: Bus Bridge

(@) GBAVI) BFBA

Figure 2. Diagrams of GBAVI and BFBA

BAN B

SMM -
[] [
Lutiss | [ks
$ crues

-[GRI GEZ |

BAN D

cm [FEGISTERS| |BI1-FIFO_D
NEPC7SS

] :I
CPU Bus D 78] : =) 3xx SPLEPS

[oBt_cEa |

(a) GBAVIIL b) Hybrid

Figure 3. Diagrams of GBAVIII and Hybrid

GBAVIIl shown in Figuwe 3(a) is a globa bus
architedure (GBA) having a locd program and data
memory, a global arbiter, and aglobal memory.

One example of a possble Bus System spedfied by
Hybrid is the combination of BFBA and GBAVIII, as
shown in Figure 3(b). This combination alows this bus
architedure to have alvantages of both the BFBA and the

GBAVIII architedures. supplying a Bi-FIFO data transfer
method bketween adjacet BANs and having a global
memory areathat can be accesd from all BANSs.

’IBIIBI IBIIBI
2 O I I wrerss | [amciss

[Erus

i [P]

D [| [2

H [smant | [smans |
imx i
| Subsystam 1 Bmrystam 2 H

Figure 4. Diagram of SplitBA

Figure 4 shows SplitBA that is compaosed of two Bus
Subsystems that have two MPC755s and a global memory
respedively. The Bus Subsystems are mnneded througha
bus bridge to exchange data between them.

GGBA and CCBA are shown in Figure 5. These bus
architedures are abaseline for performance @mparisons
with other Bus Systems.

BAN & Ba
MPCTSS_a| [MPCTSS B| |MPCTSS_C| |MPC735)
MPC755_, MPC7S5] MPCTS5_L MPC755_]
PLE % #
M‘PC755 MPCTSS wpcrss MPCISS abirer | ProcassorLacal Bus (FLE) \
> 3: ;
" SRAM_A H SRAM_B H SRAM € ” SRAM_D ‘ H
MEI " |
[| i
””””””””” @GccBA T meocesa

Figure5. Diagrams of GGBA and CCBA

4.3. Bus System Generation
4.3.1. Librariesfor Module Repository and Wiring.

BusSyn usestwo libraries. OneisaModule Library that
is used for Modules to be @nfigured in a BAN, and the
other is a Wire Library for conneding the Modules in a
BAN and for conneding the BANsin a Bus Subsystem.

The Module Library describes the input/output ports and
behavior of ead module in Register Transfer Level (RTL)
Verilog. The library, for example, contains the foll owing
components:. MPC755 IF as a processor core interface
MBI_SRAM for interface between memory and hbus,
SBFBA for a segment of bus of BFBA and GBI_BFBA for
ageneric businterface

The Wire Library contains al possble combinations of
legal connedions between bus elements (e.g., between
Modules in eatch BAN and between BANs in ead Bus
Subsystem). This library is written in ASCII format as
shown in Figure 6, and there ae severa fields to spedfy
connedion information: wire name (w_name), wire width
(w_width), module x name (mx_name), port name in
modulex (mx_pname), most significant bit (mx_wmsb)
and least significant bit(mx_wlsb), where the ‘x’ is1 or 2.
Example 1 shows how to use the Wire Library.

Fowire <library name>

w_name w_width ml_ name ml_pname ml_wimsbh ml_wlsbh %
mZ_name mZ_pname mZ2_wimsh mZ_wlsh

Yoendwire

Figure6. The Format in WireLibrary

Example 1. As an example of wire connection in a BAN,
MBI_SRAM supplies an address to SRAM_A in BAN A of
Figure 2(b) BFBA. To specify, according to Figure 6, 20-bit

address wire ‘w_addr[19:0]' between SRAM_A and MBI_SRAM,
the wire information in the Wire Library is as follows:
%wire ban_bfba
w_addr 20 SRAM_A sram_addr 19 0 MBI_SRAM addr 22 3
%endwire

Another example of a wire connection between BANs in a Bus
Subsystem is data bus wire ‘w_data[63:0]' between BAN A and
BAN B in Figure 2(b). To indicate the wire, the wire is specified as
follows:
%wire subsys_bfba
w_data 64 BAN fifo_dqg_dn 63 0 BAN fifo_dg_up 63 0
%endwire O

4.3.2. The Bus System Gener ation Sequence.

To design a custom bus, the user first inputs options that
are described in the right hand side box of Figure 7. These
options are input constraints used to generate a custom Bus
System. The input sequence of user options is described in
more detail in [15].

User Options
1. Bus Type
Il - GBAVL, GBAVIIL BFBA, Hybrid or SphtBA

2. Bus Praperty

‘ User Options Input ‘ - Address bus width

- Data bus width
1L - Bi-FIFO depth
—— Bi- FIFO width
Module Extraction from Library & oo i
Mo dule Ei% Required Module Generation ‘ - Mumber of FIFOs
Library 3. CPU Type
Il - MPC750, MPC755 or ARMOTDMI

4. Non-CPU Type

- BEus Access Node(BAN) Integration - DCT or MPEG2 decoder
5. Memory Type
Wire 1L - SRAM, DRAM, DFRAM or FIFO
Library &. Memory Property
Bus Subsystemn Generation | - Address hus width
@ - Data hus width
7. BAN Property
- CPU type or Non-CPU type
- Mumber of memory
[S. Bus Subsystem Property
- Mumber of BANs
Synthesizable - Bus type or the combination
Verilog HDL code of different bus type
9. Bus System Property
- Number of Bus Subsystems
Figure 7. The Bus System Generation Sequence
PANGen(module name array. user option array, ban name){
i* Step 1 */
For each module name iin module name aray. look up
module name iin the Module Library and extract
or generate the corresponding RTL Werilog code
for each module i:
i* Step 2 */
Read wire information from Wire Library for each B AN
For each module i,
i+ Step 3 *+/
Read port information from module i:
/% Step 4 */
WAhile port j is not last port{
WWhile wire Kk is not last wire{
Compare wire k information with port j information;

If wire k information is matched with port j information,
add wire k, wire conmection k and port j into each list;

‘ Bus System Generation ‘

¥
H
¥
i+ Step 5 */
Instiantiate the required Modules;
“Write Verilog HDL code for a B AN;

Figure 8. Pseudo Code for BAN Generation

Figure 8 shows the pseudo code for BAN generation
after the user options are specified. In Step 1 of the code,
Modules required in each BAN are either extracted from
the Module Library or generated. After extracting and
generating the Modules for a BAN, wire information from
the Wire Library is read in Step 2, and port information
from each required Module isread in Step 3. Step 4 of the
code uses the wire and port information not only to decide
required wire connections Module-to-Module and Module-
to-port but also to obtain exact 1/O ports of the BAN to be
generated, where both ends of a wire are examined if the
wire needs to be connected to a Module and/or to a port of
the BAN. Finaly, in Step 5, BANGen() writes Verilog
HDL code &fter instantiating the Modules and wiring the

instantiated Modules, based on wires, wire connections and

the ports that are decided from the previous Steps.
Example 2: Consider the wire ‘w_addr’ described in Example 1.
For BAN A of BFBA shown in Figure 2(b), the required Modules
are as follows: MPC755 Interface, MBI_SRAM, REGISTERS,
CBI MPC755, SRAM_A and BI-FIFO. Step 1 of BANGen() in
Figure 8 extracts the first three Modules (MPC755 Interface,
MBI_SRAM and REGISTERS), and the others are generated
according to the user options: for example, SRAM parameters for
SRAM_A. In Step 2 of Figure 8, BANGen() reads wire information
(e.g., w_name ‘w_addr, mx_name ‘SRAM_A' and mx_pname
‘sram_addr’ in the format of Figure 6) from the Wire Library. In
Step 3 of Figure 8, BANGen() obtains port and Module information
(e.g, ‘sram_addr’ and ‘SRAM_A’) from each Module. Next, during
Step 4, BANGen() compares the wire information, the port and
Module information to decide which wires (e.g., ‘w_addr’) need to
be connected between the Modules. Finally, in Step 5 BANGen()
instantiates the required Modules with the decided wires and
writes Verilog HDL code describing BAN A.00

Bus Subsystem generation is done through an
instantiation procedure of generating BANSs according to
the Bus Subsystem Property and a wiring procedure to
integrate the BANSs together. The pseudo code of the
algorithm for the Bus Subsystem generation is shown in
Figure 9. In Step 1 and Step2 of Figure 9, wire
information is read from the Wire Library, and port
information is obtained from each BAN to be generated.
Step 3 compares the ports and the wires so that required
wires and wire connections between BANSs are decided for
a Bus Subsystem. In Step 4, SubSysGen() writes Verilog
HDL code after instantiation of required BANSs and wiring
the instantiated BANS, based on the wires and wire
connections that are decided in the previous Steps.

SubSysGen(B AN name array. user option array. subsystem name){
/* Step 1 */
Read wire information from "Wire Library for each Bus SubSystem;
For each BAN iin BAN name array,
/* Step 2 */
Read port information from BAN iif BAN i is different
from BAN (i-1):
/* Step 3 */
While port j is not last port{
While wire k is not last wire{
Compare wire k information with port j information;
If wire k information is matched with port j information,
add wire k and wire comnnection k into each list;

H

¥

S+ Step 4 */

Instiantiate required B ANs;

“Write Verilog HDL code for a Bus Subsystem;

Figure 9. Pseudo Code for Bus Subsystem Generation

Example 3: Consider the wire ‘w_data’ and the port ‘fifo_dq_up’
described in Example 1. To generate Figure 2(b) BFBA's Bus
Subsystem (which, as shown in Figure 2(b), is also a Bus
System), in Step 2 of Figure 9 SubSysGen() reads wire
information (e.g., ‘w_data’ and ‘fifo_dqg_up’) from the Wire Library,
obtains port information (e.g., ‘fifo_dq_up’) from BAN A generated
in Example 2, compares the port information with the wire
information, and decides which wires (e.g., ‘w_data’) will be
connected to the appropriate ports (e.g., ‘fifo_dg_up’) of BAN A in
Step 3. With the same method, in Step 3 SubSysGen() decides
wires (e.g., ‘w_data’) to be connected to the appropriate ports
(e.g., ‘fifo_dg_dn’) of BANs B, C and D. Finally, SubSysGen()
instantiates BANs A, B, C and D with the wires and wire
connections that are decided upon in Step 3 of Figure 9 and writes
Verilog HDL code describing the Bus Subsystem in Step 4.0

A Bus Subsystem can become a Bus System if the user
wants a single bus architecture for the entire chip instead of
multiple bus architecturesin the SoC.

A Bus System is made by using BBs to conned
generated Bus Subsystems. As we have eplained
throughout this sdion, BusSyn can generate Modules as
well as do a syntadic trandlation from high-level input
description based on the user options in order to output
synthesizable Verilog HDL code for a multi processor SoC.

5. Application Examples

Five kinds of bus architecures for a multi procesor SoC
were generated using BusSyn and then simulated to
evauate the performance with two applicaions: MPEG2
demder [11] and Orthogonal Frequency Division
Multiplexing (OFDM)[12], which is a wireless
communication protocol.

Functions in OFDNM Transmitter
Imitialization fchannel parameters, etc)
Train Pulse Generation
E Symbol Gerneration
Data Generation and Symbol Mapping
Bit Reverse for Inverse FFT

Function Group

F Inverse FFT

G Normalizing Inverse FET
Normalization

H Insertion of Guard Signal

Data Cutput
Mote: Ttalicized functions are executed only once when starting OF DM systern

Table 1. Function Assignment for each BAN in OFDM

B

BAN 4

EFGH EFGH

E | E
| F ErcIT LrGIT

LA

EFGH EFGH

Uoma»g

gawp

o
TG (M|
TG

EFGH EFGH

ime

T
(a) Pipelined Parallel Algorithm (b) Functional Parallel Algorithm

Figure 10. Software Programming Stylein OFDM

Table 1 shows a list of functions in OFDM, and
Figure 10 describes the wmputation in ead processor
acording to programming style: pipelined paralléel
algorithm (PPA) and functional paralel algorithm (FPA).
We programmed the OFDM transmitter algorithm in both
PPA style and FPA style to see how the styles affed
performance The FPA style proved to be faster in most
cases. One padket of OFDM data here contains a 2048
complex valued sample and a 512-complex valued guard
signal. For the MPEG2 decoder, we exclusively used the
FPA style because it yielded the fastest results. We used a
very small picture (16 gxels x 16 pxels) becaise of the
limitation of simulation time. The details of these
applicdionsarein[15].

6. Experimental Results
6.1. Experimental Environment

For the Bus System simulation, we use SeamlesgCVE, a
hardware/software @-simulation toodl from Mentor
Graphics[13], together with VCS, a Verilog HDL
simulator from Synopsys [14]. We use the Synopsys
Design Compiler to synthesize the Verilog HDL code to
logic gates. More environment detail, including processors
we used, isavailable in atechnicd report [15].

6.2. Comparison of Results

With the generated Bus Systems, Figures 2, 3 and 4, and
hand-designed examples of GGBA and CCBA (shown in

Figure5), we evaluate the performance and verify the
operation of ead Bus System with the OFDM transmitter
and MPEG2 deaoder.

o Bus 3 ' § Software
Case System Throughput [Mbps] Programming Style
1 BFBA 2.6504 PPA
2 GBAVI 2.1087 PPA
3 4.5599 FPA
4 GBAVII 2.2567 PPA
5 . 4.5599 FPA
6 Hybrid 2.6504 PPA
7 SplitBA 5.1132 FPA
8 4.3913 FPA
9 GGBA 2.1880 PPA

MNote: 1. FPA: Pipelined Parallel Algorithm, FP A Functional Parallel Algorithm
2. Data: 2048 complex samples and 512 guard complex samples per packet
3. All Bus Systems run on four PowerFPCs support instruction and data cache operations

Table 2. Evaluation Resultsin OFDM Transmitter

Table 2 shows the results of our evaluation using
OFDM. The operation of BFBA and GBAVI is well
matched to the PPA style because BFBA and GBAVI only
have data transfer mechanisms between BANSs instead of
having a memory shared among al BANs. SplitBA is
composed of two Bus Subsystems conneded with a Bus
Bridge, and the two Bus Subsystems operate
independently. So, in SplitBA, it is more reasonable to use
the FPA style. SplitBA (Case 7 in Table 2) using the FPA
style shows the best performance anong the Bus Systems
in our example: OFDM transmisdon reades a rate of
5.1132Mbps, 16.44% faster than GGBA which we take &
representative of atypicd commercial bus. We can seein
Table2 that the throughput of eadr Bus System is
significantly affeded by the bus types and programming
style (PPA vs. FPA):

(1) In software programming style, FPA beas PPA in the
OFDM transmitter applicdion (e.g., Case 3 vs. 4 or
Case 8vs. 9inTable2). Thereason isthat, for OFDM,
FPA balances the computational load better than PPA.

(2) Bus Systems using a shared memory for program and
locd data (eg., GGBA) require more memory
arbitration time than in Bus Systems having separate
memories for program and locd data for ead BAN
(e.g., GBAVIIl). This arbitration time difference
explainswhy GBAV III outperforms GGBA.

(3) SplitBA relieves bus traffic congestion due to shared
memory requests from eadn BAN. With this reason,
SplitBA beas GGBA in our example (Case 7 vs. 8).

(4) A fast data transfer method between BANs such as Bi-
FIFO of BFBA contributes to the performance
improvement observed for the PPA style (e.g., Case 1 >
Case 4 > Case 9 > Case 2, in throughput).

In the MPEG2 deder results sown in Table 3, Hybrid
(Case 13) shows the best performance becaise Hybrid
allows the use of both BFBA and GBAV 11 's feaures such
as fast data transadions between adjacent BANs using Bi-
FIFOs and global data acceses in goba memory from all
BANs. Above dl, the reasson Hybrid and GBAVIII
outperform CCBA is faster arbitration time in real
operations (3 cycles as compared to 5 in CCBA). In
Table 3, BFBA and GBAVI perform poaly becaise data

has to be passed from BAN A to ead BAN sequentialy to
supply the global data to be processed in eacy BAN. The
end result is that Hybrid, generated by BusSyn,
outperforms CCBA by 15.54% in this example.

Bus System

Throughput [Mbps]

10 BFBA 0.8594

11 GBAVI 0.8271

12 GBAVIII 1.1444

13 Hybrid 1.1650

14 CCBA 1.0083
[NMote] 1.Picture size: 16x 16

2.Al1l Bus Systems run on four PowerPCs have Functional Parallel Algorithrm
Table 3. Evaluation Resultsin M PEG2 Decoder

38 processors 16 processors 24 processors
Time Gate Time Gate Time Gate Time Gate
[ms] count [ms] count [ms] count [ms] counts
BFBA 509 800 534 6,401 346 | 12,793 578 | 19,188
GBAVI 417 872 432 5,899 457 | 13,751 506 | 21,2358
GBAVITT 513 | 2,070 | 342 | 14,746 563 | 30,798 | 590 | 48,395
Hybrid 763 | 2,973 | 859 | 21,869 | 928 | 44,847 | 983 | 69,697
SplitB.A N/A N/A 413 4,297 440 8,605 491 | 16,110
[Note] Time: Bus generation time, M/4A: Mot Applicable
Gate count: MAND?2 gate count in TEMG 0.25pm standard cefl tibrary

Bus 1 processor

System

Table 4. Generation Time and Gate Count in the
Generated Bus Systems

Table 4 shows the generation time of the Bus Systems
generated using BusSyn and gate counts of the Bus System
logic dter synthesizing the logic using the LEDA TSMC
0.25um standard cdl library with the Synopsys Design
Compiler. Since our goa is cycle acaorate
hardware/software asimulation, we do not include layout
parameters such as wire aeain our area etimates. Thus,
after using our toal, extrawork is required to oktain layout
acwrate aea ad timing estimates for the final chip
implementation. BusSyn can generate a Bus System
having any number of processors, but the table shows Bus
Systems having a maximum of 24 pocessors. In the
generation time alumn, all Bus Systems down in Table 4
take lessthan one seand to generate using BusSyn. Our
experience is that porting GGBA or CCBA to aur
applicdion examples, on the other hand, took about one
week. The onewee&k was pent understanding signal
functions of the processors and the modeling of required
Modules and their interfaces. Note that BusSyn achieves
performance superior to the hand design of GGBA and
CCBA, but the austom bus architedure is designed in a
matter of seaonds instead of weeks. This means we have a
major benefit that is fast design space eploration of bus
architedures aaoss performance impading fadors sich as
bus types, processor types and software programming style
resulting in a system having high performance. This goal
is acaomplished through BusSyn, which leals the user to
easily design Bus Systems in a matter of seconds.

7. Conclusion

In this paper, we have described a methoddogy to
generate astom Bus Systems for multiprocesor SoC
designs. BusSyn, a bus generation tod using this
methoddogy, generates five different Bus Systems as
examples: BFBA, GBAVI, GBAVIII, Hybrid and SplitBA.
In Sedion 6, the Bus Systems are evaluated in performance
and are verified in operation with two applicaions: OFDM

transmitter and MPEG2 decoder. Our methoddogy gives
us a gred benefit in fast design space eploration of bus
architedures acoss the performance impading fadors
such as bus types and software programming style. We
showed that BusSyn adieves performance better than the
hand design of a simple GGBA and CCBA, but in a matter
of semndsinstead of weeks.

8. Acknowledgements

This reseach is funded by the State of Georgia under the
Yamaagaw Initiative and by NSF under INT-9973120 CCR-
9984808 and CCR0082164 We adknowledge doretions
recaved from Dendi, Hewlett-Padard, Intel, LEDA, Mentor
Graphics, SUN and Synogsys.

9. References

[1] 1BM, “CoreConred Bus Architedure,” [Online document],
Available HTTP: http://www.chips.ibm.com/products/
coremnred/ docs/cron_wp.pdf.

[2] ARM, “AMBA Spedficaion Overview,” [Online
document], Available HTTP: http://www.arm.com/
Pro+Periphera SAMBA.

[3] Sonics, “Sonics uNetwork Technicd Overview,” [Online
document], Avail able HTTP: http//:www.sonicsinc.com/
Documents/Overview.pdf.

[4] Bill Dittenhder, “Conneding Multi-SourcelPto a
Standard On Chip Architedure,” [Online document],
Available HTTP: http://www.pal mchip.com/pdf/CP-9248P.pdf.

[5] M. Gasteier and M. Glesner, “Bus-Based Communicdion
Synthesis on System-Level,” Proceedings of 9" International
Symposium on System Synthesis, pp. 65-70, 1996

[6] R.A.Bergamaschi and William R. Lee “Designing
Systems-on-chip using cores,” Proceedings of Design
Automation Conference, pp. 420-425, 200Q

[7] D.Lyonrerd, Sungjoo Yoo, Amer Baghdadi and Ahmed A.
Jerraya, “ Automatic Generation d Application-Spedfic
Architedures for Heterogeneous Multi processor System-on-
Chip,” Proceedings of Design Automation Conference, pp.
518523 2001

[8] G. Nicolescu, S. Yoo, A. Bouchhima and A. Jerraya,
“Validationin a Comporent-Based Design Flow for
Multi core SoCs,” Proceedings of the International
Symposium on System Synthesis, pp. 162167, 2002

[9] F.Gharsdli, D. Lyonrard, S. Meftali, F. Rousseau, A.
Jerraya, “Unifying Memory and Processor Wrapper
Architecurein Multiprocessor SoC Design,” Proceedings
of the International Symposium on System Synthesis
(ISSS 02)pp. 26-31, 2002

[10] Pentek, “Operating manual for Model 4290and 4297”
[Online document], Avail able HTTP: http//:www.pentek.
com/productsGetDoc.CFM /80042900 df.

[11] K. R. Rao and J. J. Hwang, “Technique & Standards for
Image Video & Audio Coding,” NJ: Prentice Hall PTR, 1996

[12] D.KimandG. L. Stiiber, " Performance of Multiresolution
OFDM on Frequency-seledive Fading Channels," IEEE
Transaction on Vehicular Technology, vol. 48, no. 5, pp.
17401746 1999

[13] Mento Graphics, “ SeanlessHardware/Software Co-
Verification,” [Online document], Available HTTP: http://
www.mentor.conv/Seamlesgddatashedas/seanless ds.pdf

[14] Synopsys, “VCS data shed,” [Online document], Avail able
HTTP:http://www.synopsys.com/products/'simul atior/
vcs_ds.html

[15] Kyeong Ryu and Vincent Mooney, “Automated Bus
Generation for Multi processor SoC Design,” Georgia
Ingtitute of Techndogy, Atlanta, GA, Technicd Report GIT-
CC-02-64, 2002 Avail able HTTP: http://www.cc.gatech.
edutech_reports.

