

Automated Bus Generation for Multiprocessor SoC Design

Kyeong Keol Ryu and Vincent J. Mooney III
Georgia Institute of Technology

Electrical and Computer Engineering, Atlanta, GA 30332, USA
{ kkryu, mooney} @ece.gatech.edu

Abstract

 The performance of a system, especially a
multiprocessor system, heavily depends upon the efficiency
of its bus architecture. This paper presents a methodology
to generate a custom bus system for a multiprocessor
System-on-a-Chip (SoC). Our bus synthesis tool (BusSyn)
uses this methodology to generate five different bus
systems as examples: Bi-FIFO Bus Architecture (BFBA),
Global Bus Architecture Version I (GBAVI), Global Bus
Architecture Version III (GBAVIII), Hybrid bus
architecture (Hybrid) and Split Bus Architecture (SplitBA).
We verify and evaluate the performance of each bus system
in the context of two applications: an Orthogonal
Frequency Division Multiplexing (OFDM) wireless
transmitter and an MPEG2 decoder. This methodology
gives the designer a great benefit in fast design space
exploration of bus architectures across a variety of
performance impacting factors such as bus types,
processor types and software programming style. In this
paper, we show that BusSyn can generate buses that
achieve superior performance when compared to a simple
General Global Bus Architecture (GGBA) (e.g., 16.44%
performance improvement in the case of OFDM
transmitter) or when compared to the CoreConnect Bus
Architecture (CCBA) (e.g., 15.54% peformance
improvement in the case of MPEG2 decoder). In addition,
the bus architecture generated by BusSyn is designed in a
matter of seconds instead of weeks for the hand design of a
custom bus system.

1. Introduction
 System-on-a-Chip (SoC) opens up new opportunities for
hardware/software codesign. For example, SoC allows the
designer to overcome some performance drawbacks of
Printed Circuit Boards (PCBs) by implementing on a single
chip many or most of the chips previously on a PCB. In
particular, single-chip integration allows one to take
advantage of increased bus speeds and widths. Thus, an
eff icient bus architecture with optimal arbitration for
reducing contention plays an important role in maximizing
the performance of an SoC.
 One issue for an SoC designer to consider is how to
exchange data among the Processing Elements (PEs) in the
SoC, e.g., should there be one bus or multiple buses and
where should memory elements be placed? A second issue
for an SoC designer to consider is how to easily and
quickly design a bus system considering the increasing

complexity of on-chip bus systems and in the context of
ever shortening time to market demands. These issues
motivate the introduction of a design automation tool that
is capable of generating customized SoC bus systems in
Verilog HDL code to speed up a user’s design space
exploration in search of a high performance bus system.
 This paper presents a methodology to generate custom
bus systems using Intellectual Property (IP) cores for a
multiprocessor SoC. Using this methodology, five
different bus systems are generated as examples in
synthesizable Verilog HDL: Bi-FIFO Bus Architecture
(BFBA), Global Bus Architecture Version I (GBAVI),
Global Bus Architecture Version III (GBAVIII) , Hybrid
bus architecture (Hybrid) that combines BFBA and
GBAVIII , and Split Bus Architecture (SplitBA). Bus
system performance is evaluated using two applications: an
Orthogonal Frequency Division Multiplexing (OFDM)
wireless transmitter and an MPEG2 decoder. We will
show that our Bus Synthesis (BusSyn) tool can eff iciently
generate a large variety of bus systems in a matter of
seconds (as opposed to weeks of design effort to put
together each bus system by hand). Furthermore, we will
compare the performance with a simple General Global
Bus Architecture (GGBA) and an industry standard on-
chip bus (CoreConnect from IBM [1]), and show a 16%
improvement with a customized bus architecture.

2. Related Work
 Most SoC bus designs are based on Intellectual Property
(IP) cores stitched together with various forms of data,
address and control li nks. There are several efforts to
make SoC bus systems from industry: Coreconnect from
IBM [1] and AMBA from ARM [2]. FastForward for
Sili conBackplane [3] and Connection Kit for
CoreFrame [4] allow a designer to integrate IP modules
and result in reduced design time for a bus system for an
SoC. We take GGBA and CoreConnect as representative
examples of these industry buses.
 Gasteier et al. [5] describe the automatic generation of a
communication topology using scheduling of data transfer
operations to reduce the cost of a bus architecture.
However, they only show support for a single type of bus
topology (a single global bus topology). We, on the other
hand, support multiple bus types.
 Bergamaschi et al. [6] present automating the design of
SoC using IP cores connected via CoreConnect. In their
methodology for assembling IP, their approach checks the

compatibilit y of IP inputs/outputs and generates wires to
connect the IP cores. Again, we, on the other hand,
support a wider variety of bus types and architectures than
CoreConnect.
 Lyonnard et al. [7] introduce a design flow for the
generation of application-specific multiprocessor
architecture. Nicolescu et al. [8] and Gharsalli et al. [9]
present a component-based design flow for a
heterogeneous and multicore SoC, where the flow
introduces a systematic method of wrapper generation for
multicore SoC design. However, in the communication
network design [7, 8 and 9], the flows presented only
supports generation of a single bus type for the system
(e.g., a shared bus or a point-to-point interconnection).
We provide more flexible bus architecture templates such
as supporting multiple and heterogeneous bus architectures
(e.g., GBAVI, GBAVIII , BFBA, Hybrid, and SplitBA) in a
system, and various optimized wrappers (e.g., CPU- bus
interface, memory-bus interface and generic bus interface)
generated or extracted from a module library file for the
ease of interface and integration between modules.

3. Terminology
 Before proceeding to discuss our Bus Synthesis tool
(BusSyn), we first explain some of the terms we will be
using to describe the different components of a bus
architecture.
Definitions
1) Processing Element (PE): hardware that performs

algorithmic processing – usually a CPU but may also be
dedicated or reconfigurable logic. Currently, we
support two types: MPC750 and MPC755.

2) Bus Bridge (BB): a controllable connection point
between two buses – if the BB is enabled, the two buses
are fully connected, otherwise the two buses are
disconnected.

3) Global Bus Architecture (GBA): a type of bus
architecture where BBs may be used to connect
different sections of the bus.

4) Bi-FIFO Bus Architecture (BFBA): a type of bus
architecture where bidirectional FIFOs are used to
transmit and receive data between adjacent PEs.

5) Segment of Bus (SB): a contiguous bus (no BBs)
consisting of address, data, and control (e.g., read
enable, write enable, request, and acknowledge) wires
specific to a particular bus type (in our case, GBA or
BFBA).

6) Bus Access Node (BAN): processing or memory
hardware together with associated bus access hardware
and SB(s).

7) Module: one of BB, SB, Arbiter, SRAM or IL (in this
paper, a PE is not a Module but instead is an IP core),
where IL is Interface Logic that will be explained in
more detail i n Section 4. Note that it is possible to
extend the definition of Module to include newly

designed hardware units. For this paper, however, the
definition given for Module suff ices.

8) Bus Subsystem: one or more BANs connected together
and using the same bus architecture or the combination
of different bus architectures (in our case, either GBA,
BFBA, or the combination of GBA and BFBA).

9) Bus System: one or more Bus Subsystems connected
together.

4. Methodology for Bus System Generation
4.1. Bus System Structure
 First, we will describe in more detail the bus
components 1) through 9) defined in Section 3. Figure 1
shows a hierarchical example of a multiprocessor Bus
System: a Bus System has Bus Subsystems, each Bus
Subsystem includes BANs that are composed of PEs
(MPC755s) and Modules, and the Bus Subsystems are
connected with a Bus Bridge. The hierarchical definition
allows a Bus System to have flexible and scaleable bus
architecture. In addition to PEs (e.g., MPC755) and
memories (e.g., SRAM) in the BANs of Figure 1, there are
more Modules specified as Interface Logics (ILs): CPU or
PE to Bus Interface (CBI), Memory to Bus Interface
(MBI), and Generic Bus Interface (GBI). With these
interface Modules, different BANs can have different types
of PEs and memories because CBI and MBI Modules
adapt the interface between the PE or memory and local
bus respectively. Similarly, GBI also gives flexibilit y in
being able to select various types of buses in a Bus
Subsystem: GBA (GBAVI or GBAVIII , to be described in
Section 4.2) and BFBA. Each BAN can access any other
BAN’s memory through the SBs. The repetition of the
BANs makes a Bus Subsystem be a scalable structure and
lets the multiprocessor Bus System be implemented fast.

Figure 1. Bus System Example

 When a Bus Subsystem has a global resource such as a
large global memory to be accessed from all BANs, the
resource is also defined as part of a BAN: for example, the
large SRAM in BAN G in Figure 1.

4.2. Bus System Examples
 In this section, we show five custom Bus Systems to be
generated by BusSyn automatically: BFBA, GBAVI,
GBAVIII, Hybrid, and SplitBA. All Bus System examples

shown in Figures 2, 3, 4 and 5 have four processors and
32MB total of memory (all examples have approximately
the same chip area because the area of the bus logic and
wires is much smaller than CPU and memory area);
however, BusSyn can generate a Bus System having any
number of processors and any sizes of memories according
to the user input that wil l be described in Section 4.3.2.
 First, we give an explanation of the five sample custom
bus architectures generated by BusSyn in this paper
(BusSyn can generate a very large number of custom bus
architectures). GBAVI shown in Figure 2(a) is a kind of
global bus architecture (GBA), but the global bus is
segmented with BBs separating each BAN. As shown in
Figure 2(b), BFBA has a Bi-FIFO between adjacent BANs.
This design is similar to some commercially available
multiprocessor PCBs such as the Quad TMS320C6701
Processor VME Board from Pentek [10]. The operations
of GBAVI and BFBA are discussed in detail i n [15].

Figure 2. Diagrams of GBAVI and BFBA

Figure 3. Diagrams of GBAVIII and Hybrid

 GBAVIII shown in Figure 3(a) is a global bus
architecture (GBA) having a local program and data
memory, a global arbiter, and a global memory.
 One example of a possible Bus System specified by
Hybrid is the combination of BFBA and GBAVIII , as
shown in Figure 3(b). This combination allows this bus
architecture to have advantages of both the BFBA and the

GBAVIII architectures: supplying a Bi-FIFO data transfer
method between adjacent BANs and having a global
memory area that can be accessed from all BANs.

Figure 4. Diagram of SplitBA

 Figure 4 shows SplitBA that is composed of two Bus
Subsystems that have two MPC755s and a global memory
respectively. The Bus Subsystems are connected through a
bus bridge to exchange data between them.
 GGBA and CCBA are shown in Figure 5. These bus
architectures are a baseline for performance comparisons
with other Bus Systems.

Figure 5. Diagrams of GGBA and CCBA

4.3. Bus System Generation
4.3.1. Libraries for Module Repository and Wiring.
 BusSyn uses two libraries. One is a Module Library that
is used for Modules to be configured in a BAN, and the
other is a Wire Library for connecting the Modules in a
BAN and for connecting the BANs in a Bus Subsystem.
 The Module Library describes the input/output ports and
behavior of each module in Register Transfer Level (RTL)
Verilog. The library, for example, contains the following
components: MPC755_IF as a processor core interface,
MBI_SRAM for interface between memory and bus,
SBFBA for a segment of bus of BFBA and GBI_BFBA for
a generic bus interface.
 The Wire Library contains all possible combinations of
legal connections between bus elements (e.g., between
Modules in each BAN and between BANs in each Bus
Subsystem). This library is written in ASCII format as
shown in Figure 6, and there are several fields to specify
connection information: wire name (w_name), wire width
(w_width), module x name (mx_name), port name in
module x (mx_pname), most significant bit (mx_wmsb)
and least significant bit(mx_wlsb), where the ‘x’ is 1 or 2.
Example 1 shows how to use the Wire Library.

Figure 6. The Format in Wire Library

Example 1: As an example of wire connection in a BAN,
MBI_SRAM supplies an address to SRAM_A in BAN A of
Figure 2(b) BFBA. To specify, according to Figure 6, 20-bit

address wire ‘w_addr[19:0]’ between SRAM_A and MBI_SRAM,
the wire information in the Wire Library is as follows:
%wire ban_bfba
w_addr 20 SRAM_A sram_addr 19 0 MBI_SRAM addr 22 3
%endwire
 Another example of a wire connection between BANs in a Bus
Subsystem is data bus wire ‘w_data[63:0]’ between BAN A and
BAN B in Figure 2(b). To indicate the wire, the wire is specified as
follows:
%wire subsys_bfba
w_data 64 BAN fifo_dq_dn 63 0 BAN fifo_dq_up 63 0
%endwire

4.3.2. The Bus System Generation Sequence.
 To design a custom bus, the user first inputs options that
are described in the right hand side box of Figure 7. These
options are input constraints used to generate a custom Bus
System. The input sequence of user options is described in
more detail in [15].

Figure 7. The Bus System Generation Sequence

Figure 8. Pseudo Code for BAN Generation

 Figure 8 shows the pseudo code for BAN generation
after the user options are specified. In Step 1 of the code,
Modules required in each BAN are either extracted from
the Module Library or generated. After extracting and
generating the Modules for a BAN, wire information from
the Wire Library is read in Step 2, and port information
from each required Module is read in Step 3. Step 4 of the
code uses the wire and port information not only to decide
required wire connections Module-to-Module and Module-
to-port but also to obtain exact I/O ports of the BAN to be
generated, where both ends of a wire are examined if the
wire needs to be connected to a Module and/or to a port of
the BAN. Finally, in Step 5, BANGen() writes Verilog
HDL code after instantiating the Modules and wiring the

instantiated Modules, based on wires, wire connections and
the ports that are decided from the previous Steps.
Example 2: Consider the wire ‘w_addr’ described in Example 1.
For BAN A of BFBA shown in Figure 2(b), the required Modules
are as follows: MPC755 Interface, MBI_SRAM, REGISTERS,
CBI MPC755, SRAM_A and Bi-FIFO. Step 1 of BANGen() in
Figure 8 extracts the first three Modules (MPC755 Interface,
MBI_SRAM and REGISTERS), and the others are generated
according to the user options: for example, SRAM parameters for
SRAM_A. In Step 2 of Figure 8, BANGen() reads wire information
(e.g., w_name ‘w_addr’, mx_name ‘SRAM_A’ and mx_pname
‘sram_addr’ in the format of Figure 6) from the Wire Library. In
Step 3 of Figure 8, BANGen() obtains port and Module information
(e.g, ‘sram_addr’ and ‘SRAM_A’) from each Module. Next, during
Step 4, BANGen() compares the wire information, the port and
Module information to decide which wires (e.g., ‘w_addr’) need to
be connected between the Modules. Finally, in Step 5 BANGen()
instantiates the required Modules with the decided wires and
writes Verilog HDL code describing BAN A.

 Bus Subsystem generation is done through an
instantiation procedure of generating BANs according to
the Bus Subsystem Property and a wiring procedure to
integrate the BANs together. The pseudo code of the
algorithm for the Bus Subsystem generation is shown in
Figure 9. In Step 1 and Step 2 of Figure 9, wire
information is read from the Wire Library, and port
information is obtained from each BAN to be generated.
Step 3 compares the ports and the wires so that required
wires and wire connections between BANs are decided for
a Bus Subsystem. In Step 4, SubSysGen() writes Verilog
HDL code after instantiation of required BANs and wiring
the instantiated BANs, based on the wires and wire
connections that are decided in the previous Steps.

Figure 9. Pseudo Code for Bus Subsystem Generation

Example 3: Consider the wire ‘w_data’ and the port ‘ fifo_dq_up’
described in Example 1. To generate Figure 2(b) BFBA’s Bus
Subsystem (which, as shown in Figure 2(b), is also a Bus
System), in Step 2 of Figure 9 SubSysGen() reads wire
information (e.g., ‘w_data’ and ‘ fifo_dq_up’) from the Wire Library,
obtains port information (e.g., ‘ fifo_dq_up’) from BAN A generated
in Example 2, compares the port information with the wire
information, and decides which wires (e.g., ‘w_data’) will be
connected to the appropriate ports (e.g., ‘ fifo_dq_up’) of BAN A in
Step 3. With the same method, in Step 3 SubSysGen() decides
wires (e.g., ‘w_data’) to be connected to the appropriate ports
(e.g., ‘ fifo_dq_dn’) of BANs B, C and D. Finally, SubSysGen()
instantiates BANs A, B, C and D with the wires and wire
connections that are decided upon in Step 3 of Figure 9 and writes
Verilog HDL code describing the Bus Subsystem in Step 4.

 A Bus Subsystem can become a Bus System if the user
wants a single bus architecture for the entire chip instead of
multiple bus architectures in the SoC.

 A Bus System is made by using BBs to connect
generated Bus Subsystems. As we have explained
throughout this section, BusSyn can generate Modules as
well as do a syntactic translation from high-level input
description based on the user options in order to output
synthesizable Verilog HDL code for a multiprocessor SoC.

5. Application Examples
 Five kinds of bus architectures for a multiprocessor SoC
were generated using BusSyn and then simulated to
evaluate the performance with two applications: MPEG2
decoder [11] and Orthogonal Frequency Division
Multiplexing (OFDM) [12], which is a wireless
communication protocol.

Table 1. Function Assignment for each BAN in OFDM

Figure 10. Software Programming Style in OFDM

 Table 1 shows a list of functions in OFDM, and
Figure 10 describes the computation in each processor
according to programming style: pipelined parallel
algorithm (PPA) and functional parallel algorithm (FPA).
We programmed the OFDM transmitter algorithm in both
PPA style and FPA style to see how the styles affect
performance. The FPA style proved to be faster in most
cases. One packet of OFDM data here contains a 2048-
complex valued sample and a 512-complex valued guard
signal. For the MPEG2 decoder, we exclusively used the
FPA style because it yielded the fastest results. We used a
very small picture (16 pixels x 16 pixels) because of the
limitation of simulation time. The details of these
applications are in [15].

6. Experimental Results
6.1. Experimental Environment
 For the Bus System simulation, we use Seamless/CVE, a
hardware/software co-simulation tool from Mentor
Graphics [13], together with VCS, a Verilog HDL
simulator from Synopsys [14]. We use the Synopsys
Design Compiler to synthesize the Verilog HDL code to
logic gates. More environment detail , including processors
we used, is available in a technical report [15].

6.2. Comparison of Results
 With the generated Bus Systems, Figures 2, 3 and 4, and
hand-designed examples of GGBA and CCBA (shown in

Figure 5), we evaluate the performance and verify the
operation of each Bus System with the OFDM transmitter
and MPEG2 decoder.

Table 2. Evaluation Results in OFDM Transmitter

 Table 2 shows the results of our evaluation using
OFDM. The operation of BFBA and GBAVI is well
matched to the PPA style because BFBA and GBAVI only
have data transfer mechanisms between BANs instead of
having a memory shared among all BANs. SplitBA is
composed of two Bus Subsystems connected with a Bus
Bridge, and the two Bus Subsystems operate
independently. So, in SplitBA, it is more reasonable to use
the FPA style. SplitBA (Case 7 in Table 2) using the FPA
style shows the best performance among the Bus Systems
in our example: OFDM transmission reaches a rate of
5.1132 Mbps, 16.44% faster than GGBA which we take as
representative of a typical commercial bus. We can see in
Table 2 that the throughput of each Bus System is
significantly affected by the bus types and programming
style (PPA vs. FPA):
(1) In software programming style, FPA beats PPA in the

OFDM transmitter application (e.g., Case 3 vs. 4 or
Case 8 vs. 9 in Table 2). The reason is that, for OFDM,
FPA balances the computational load better than PPA.

(2) Bus Systems using a shared memory for program and
local data (e.g., GGBA) require more memory
arbitration time than in Bus Systems having separate
memories for program and local data for each BAN
(e.g., GBAVIII) . This arbitration time difference
explains why GBAVIII outperforms GGBA.

(3) SplitBA relieves bus traff ic congestion due to shared
memory requests from each BAN. With this reason,
SplitBA beats GGBA in our example (Case 7 vs. 8).

(4) A fast data transfer method between BANs such as Bi-
FIFO of BFBA contributes to the performance
improvement observed for the PPA style (e.g., Case 1 >
Case 4 > Case 9 > Case 2, in throughput).

 In the MPEG2 decoder results shown in Table 3, Hybrid
(Case 13) shows the best performance because Hybrid
allows the use of both BFBA and GBAVIII ’s features such
as fast data transactions between adjacent BANs using Bi-
FIFOs and global data accesses in global memory from all
BANs. Above all , the reason Hybrid and GBAVIII
outperform CCBA is faster arbitration time in read
operations (3 cycles as compared to 5 in CCBA). In
Table 3, BFBA and GBAVI perform poorly because data

has to be passed from BAN A to each BAN sequentially to
supply the global data to be processed in each BAN. The
end result is that Hybrid, generated by BusSyn,
outperforms CCBA by 15.54% in this example.

Table 3. Evaluation Results in MPEG2 Decoder

Table 4. Generation Time and Gate Count in the

 Generated Bus Systems
 Table 4 shows the generation time of the Bus Systems
generated using BusSyn and gate counts of the Bus System
logic after synthesizing the logic using the LEDA TSMC
0.25µm standard cell li brary with the Synopsys Design
Compiler. Since our goal is cycle accurate
hardware/software cosimulation, we do not include layout
parameters such as wire area in our area estimates. Thus,
after using our tool, extra work is required to obtain layout
accurate area and timing estimates for the final chip
implementation. BusSyn can generate a Bus System
having any number of processors, but the table shows Bus
Systems having a maximum of 24 processors. In the
generation time column, all Bus Systems shown in Table 4
take less than one second to generate using BusSyn. Our
experience is that porting GGBA or CCBA to our
application examples, on the other hand, took about one
week. The one-week was spent understanding signal
functions of the processors and the modeling of required
Modules and their interfaces. Note that BusSyn achieves
performance superior to the hand design of GGBA and
CCBA, but the custom bus architecture is designed in a
matter of seconds instead of weeks. This means we have a
major benefit that is fast design space exploration of bus
architectures across performance impacting factors such as
bus types, processor types and software programming style
resulting in a system having high performance. This goal
is accomplished through BusSyn, which leads the user to
easily design Bus Systems in a matter of seconds.

7. Conclusion
 In this paper, we have described a methodology to
generate custom Bus Systems for multiprocessor SoC
designs. BusSyn, a bus generation tool using this
methodology, generates five different Bus Systems as
examples: BFBA, GBAVI, GBAVIII , Hybrid and SplitBA.
In Section 6, the Bus Systems are evaluated in performance
and are verified in operation with two applications: OFDM

transmitter and MPEG2 decoder. Our methodology gives
us a great benefit in fast design space exploration of bus
architectures across the performance impacting factors
such as bus types and software programming style. We
showed that BusSyn achieves performance better than the
hand design of a simple GGBA and CCBA, but in a matter
of seconds instead of weeks.

8. Acknowledgements
 This research is funded by the State of Georgia under the
Yamacraw Initiative and by NSF under INT-9973120, CCR-
9984808 and CCR-0082164. We acknowledge donations
received from Denali , Hewlett-Packard, Intel, LEDA, Mentor
Graphics, SUN and Synopsys.

9. References
[1] IBM, “CoreConnect Bus Architecture,” [Online document],

Available HTTP: http://www.chips.ibm.com/products/
coreconnect/ docs/cron_wp.pdf.

[2] ARM, “AMBA Specification Overview,” [Online
document], Available HTTP: http://www.arm.com/
Pro+Peripherals/AMBA.

[3] Sonics, “Sonics µNetwork Technical Overview,” [Online
document], Available HTTP: http//:www.sonicsinc.com/
Documents/Overview.pdf.

[4] Bill Dittenhofer, “Connecting Multi -Source IP to a
Standard On Chip Architecture,” [Online document],
Available HTTP: http://www.palmchip.com/pdf/CP-9248P.pdf.

[5] M. Gasteier and M. Glesner, “Bus-Based Communication
Synthesis on System-Level,” Proceedings of 9th International
Symposium on System Synthesis, pp. 65-70, 1996.

[6] R.A. Bergamaschi and Willi am R. Lee, “Designing
Systems-on-chip using cores,” Proceedings of Design
Automation Conference, pp. 420-425, 2000.

[7] D. Lyonnard, Sungjoo Yoo, Amer Baghdadi and Ahmed A.
Jerraya, “Automatic Generation of Application-Specific
Architectures for Heterogeneous Multiprocessor System-on-
Chip,” Proceedings of Design Automation Conference, pp.
518-523, 2001.

[8] G. Nicolescu, S. Yoo, A. Bouchhima and A. Jerraya,
“Validation in a Component-Based Design Flow for
Multicore SoCs,” Proceedings of the International
Symposium on System Synthesis, pp. 162-167, 2002.

[9] F. Gharsalli , D. Lyonnard, S. Meftali , F. Rousseau, A.
Jerraya, “Unifying Memory and Processor Wrapper
Architecture in Multiprocessor SoC Design,” Proceedings
of the International Symposium on System Synthesis
(ISSS' 02), pp. 26-31, 2002.

[10] Pentek, “Operating manual for Model 4290 and 4291,”
[Online document], Available HTTP: http//:www.pentek.
com/products/GetDoc.CFM/80042900.pdf.

[11] K. R. Rao and J. J. Hwang, “Technique & Standards for
Image Video & Audio Coding,” NJ: Prentice Hall PTR, 1996.

[12] D. Kim and G. L. Stüber, '' Performance of Multi resolution
OFDM on Frequency-selective Fading Channels,'' IEEE
Transaction on Vehicular Technology, vol. 48, no. 5, pp.
1740-1746, 1999.

[13] Mento Graphics, “Seamless Hardware/Software Co-
Verification,” [Online document], Available HTTP: http://
www.mentor.com/Seamless/datasheets/seamless_ds.pdf

[14] Synopsys, “VCS data sheet,” [Online document], Available
HTTP:http://www.synopsys.com/products/simulation/
vcs_ds.html

[15] Kyeong Ryu and Vincent Mooney, “Automated Bus
Generation for Multiprocessor SoC Design,” Georgia
Institute of Technology, Atlanta, GA, Technical Report GIT-
CC-02-64, 2002, Available HTTP: http://www.cc.gatech.
edu/tech_reports.

