
1

Interconnect Delay Aware RTL Verilog Bus Architecture Generation for an SoC

Kyeong Keol Ryu*, Alexandru Talpasanu, Vincent J. Mooney III* and Jeffrey A. Davis
*Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
{kkryu, alex, mooney, jeff}@ece.gatech.edu

Abstract
As feature size is scaled down to the submicron level,

interconnect delay in the design of a high-speed System-on-a-
Chip (SoC) becomes a major concern. This concern is especially
acute for on-chip buses. In this paper we describe a
methodology to generate a custom bus architecture using
accurate estimations of interconnect delay. To improve bus
delay accuracy, the bus Verilog register-transfer level (RTL)
specification was altered based on interconnect delay
estimations. Interconnect delay information is provided from an
estimated chip layout. The delay estimates for the on-chip buses
are used early in the design phase with a corresponding impact
on system correctness and performance. As an example of
interconnect delay aware bus generation, we compare three dif-
ferent General Global Bus Architecture (GGBA) configurations,
showing that certain system blocks (the memory controllers)
need to be modified based on interconnect delay estimation.

The three different GGBA configurations are evaluated
through the simulation of an orthogonal frequency division
multiplexing (OFDM) wireless transmitter application. The
impact of accurate interconnect delay estimation is shown
through a 35.3% reduction in execution time between a worst-
case bus delay configuration (GGBA III) and an accurate
interconnect delay aware GGBA configuration (GGBA II).

1. Introduction
This paper presents interconnect aware bus synthesis for

System-on-a-Chip (SoC). Due to the nature of SoC design, in
which multiple Intellectual Property (IP) cores are placed
together and connected with global busses, interconnect delay
plays a significant role in system performance. This paper shows
that a design which takes into account accurate global bus
interconnect delay differs by a significant amount in performance
from a design with worst-case interconnect delay. Namely, when
accurate interconnect delay is included in the RTL specification
of the buses in an SoC, the application execution time decreases
when compared to a worst-case interconnect delay configuration
that has a maximum estimated delays on all data paths.
Specifically, in a comparison of accurate interconnect delay
aware design case versus worst-case delay aware design in the
context of an orthogonal frequency division multiplexing
(OFDM) example, the former case has 35.3% performance
improvement.

Bus architecture in a multiprocessor SoC plays an important
role in system performance. Several efforts from industry
provide platforms to connect intellectual property (IP) cores in an
SoC, e.g., CoreConnect from IBM [2] and AMBA from
ARM [3]. However, these do not integrate custom bus synthesis
and interconnect delay.

Several previous works focus on bus architecture synthesis
and IP integration for a multiprocessor SoC: CoWare Napkin-to-
Chip (N2C) [4] and Shin et al. [5]. These tools, however, do not
discuss interconnect delay aware bus architecture generation.

Thepayasuwan et al. [6] describe layout conscious bus
architecture synthesis. Our work, on the other hand, utilizes
interconnect delay prediction from a system floorplan to provide
a more customized bus architecture that is suitable for a specific
user’s set of applications since the methodology generates the
bus architecture based on various user input options [1].

The floorplan described in this article was created manually;
however, automated floorplanning tools such as MOCSYN [15]
can produce SoC floorplans which can be used to automatically
extract bus interconnect lengths.

2. Methodology for bus generation
We discuss interconnect delay aware bus architecture

generation in this section. As an example, we show a generation
of an SoC bus system called General Global Bus Architecture
(GGBA). First, we present how to estimate interconnect delay in
a system and then describe the generation of a module that is
closely related to the interconnect delay in the system operation.
After that, we introduce the bus architecture generation.

2.1. Interconnect delay estimation
The method used to estimate bus delay was to construct an

estimated floorplan for the system, extract interconnect lengths
from the floorplan, and model the respective global buses using
circuit simulations tools.

2.1.1. General Global Bus Architecture floorplan

The construction of an estimated floorplan for the GGBA was
facilitated by obtaining die area estimates for four PowerPC
processing elements (PEs) used in this system. This information
was available from the Motorola [8] website. Another element
used in the floorplan was the memory module. The area estimate
for the SRAM module in the GGBA system was found using the
UMC chip-sizer [9] available on the UMC website. The UMC
chip-sizer tool was also used to find approximate areas for a bus
arbiter, four CPU bus interfaces (CBI), as well as a memory bus
interface (MBI).

������������������������

������������

�	
��	
��	
��	
��	
��	
��	
��	
�

������������������������

������������

������������������������

������������

������������������������

������������

Memory Bus
Interface (MBI)

Bus Arbitrer

Bus Interconnect
Legend

CPU Bus Interface
(CBI)

Figure 1. GGBA estimated layout

2

An estimated floorplan of the GGBA architecture is shown in
Figure 1. This floorplan was manually created with designer
input, but could have been automated by a core placement tool
such as MOCSYN [15]. Figure 1 illustrates the floorplan of a
global bus connecting the four processing elements and a single
memory element. The GGBA floorplan was used to estimate PE-
SRAM interconnect lengths; the results are listed in Table 1.

Table 1. Interconnect length estimation for GGBA system

2.1.2. Bus interconnect physical models

The bus interconnect shown in Figure 1 represents a data bus
connecting the four processing elements to the memory. The bus
width for this GGBA system is 64 bits. Repeaters are not used in
this design because it was found that they take up significant area
while offering non-substantial improvements in delay and
crosstalk. A more detailed analysis is discussed in a technical
report available online [11].

HSPICE simulations were performed on this
bi-directional bus to calculate interconnect delay. The HSPICE
wire models included resistance, capacitance and inductance
values extracted from a MOSIS run [10] for the chosen TSMC
0.25� m technology as well as bus interconnect lengths from the
GGBA system floorplan. A set of series connected RLC L-
models was used to model each bus wire, with the total resistance
[14], inductance and capacitance [12][13] being derived from the
total length of the bus. The interconnect length and HSPICE
delay estimations between each processing element and the
memory are shown in Table 1. The method used to estimate
interconnect delay was automated by the use of shell-scripting
and a C program.

2.2. Memory bus interface (MBI) module generation
One of the effects of interconnect delay insertion in an SoC is

in the memory access cycle count of each PE. In this section, we
describe an interconnect delay aware memory controller (an MBI
module) for a system in its operation, and we also show
automatic generation of the MBI.

2.2.1. The operation of an MBI module
An MBI module in a system is an interface module operating

as a memory controller which is located between a bus and a
memory. The module generates PE control signals (e.g.,
aack_bar and ta_bar in PowerPC) related to memory access
cycle and also generates memory control signals (e.g., cs_bar,
addr, we_bar and oe_bar). Since moving data to or from
memory in a system is deferred due to interconnect delay,
suitable memory controlling in the system is required to account
for the bus delay so that the system operates without failure and
with maximum performance. A method to ensure suitable
memory control is to extend every memory access cycle
according to the length of the bus interconnect delay. For
example, we control two pins of the PowerPC MPC755 for the
purpose of memory cycle extension: address acknowledge
(aack_bar) and transfer acknowledge (ta_bar). Here, the
aack_bar signal terminates an address bus cycle while the ta_bar
terminates a data bus cycle. To extend each memory cycle, we

delay the control signals in a memory access cycle by inserting
dummy clock cycles in the memory controller.

2.2.2. The generation of an MBI module
Before generating the MBI module, with regard to the

estimated interconnect delay shown in Section 2.1, we calculate
total delay including the time taken to move controls and data on
the bus in two directions (e.g., from a PE to memory and vice
versa) and the time taken to access memory in a read operation.
However, since transmitting the signals for controls and data on
the bus to a shared memory has the same direction to the memory
in a write operation, we only consider the effect of bus
interconnect delay in a read operation.

Table 2. Estimated total delay of paths between each PE and
a shared memory

Table 2 shows estimated delays for the GGBA estimated

layout shown in Figure 1. The second column shows estimated
interconnect delays described in Section 2.1, and the third
column shows bidirectional delays for a read operation. The
fourth column shows memory access time for a 2 MByte SRAM,
where the access time is estimated by using CACTI 3.0, which is
an integrated cache access time, cycle time, area, aspect ratio and
power model [7]. Finally, the fifth column is the summation of
the previous three columns, that is, total delays considered in
read operations.

Table 3 shows the number of clock delay cycles that will be
inserted into a memory cycle for the cases that a GGBA system
has three different bus clocks, respectively. The total delays
shown in Table 2 are divided by each bus clock period in order
to obtain the number of clock delays shown in Table 3.

Table 3. Number of clock delays in data paths

Input of
interconnect delays

Calculation of the number
of clocks to be inserted

Extraction of MBI module
from Module Library

Update of memory access
delay parameters
in an MBI module

Figure 2. Sequence of MBI module generation

Figure 2 describes the sequence of MBI module generation,
which is a module generation procedure of our bus synthesis tool
(BusSyn) that will be described in Section 2.3. With the input of
interconnect delay shown in Table 1, the number of clock cycles
required to be inserted for a memory access cycle is calculated in
the second step. Then, based on the user input options [1] that
configure an SoC bus system with shared memory, an MBI

3

module is extracted from a Module Library that contains the
respective module as a library component [1]. The module is
described in Verilog HDL and has pre-defined delay parameters
which model corresponding clock delays to memory access
cycles. Finally, the delay parameters are updated with the
number of clocks calculated in a previous state.

2.3. Bus system generation
The flowchart in Figure 3 shows the sequence for bus system

generation in our bus synthesis tool (BusSyn) [1]. First, BusSyn
takes user input options for a bus system to be generated, and
based on these options, BusSyn generates the required bus access
nodes (BANs) after generating required modules for the
BANs [1]. The MBI module described in Section 2.2 is
generated at this time based on the user options. BusSyn
subsequently assembles the BANs into required bus subsystems,
each of which consists of one or more BANs connected together
using bus components. After that, if the bus system the user
wants has more than one bus subsystem, the generated bus
subsystems are integrated into a resulting bus system. Otherwise,
the generated single bus subsystem becomes a bus system.
Finally, BusSyn writes synthesizable Verilog HDL code for the
generated bus system.

Bus Access Node (BAN) generation

Synthesizable
Verilog HDL code

Wire
Library

Bus System Generation

BusSyn

Bus Subsystem Generation

For each Bus Subsystem

of Subsystem != 1

Y

N

Module
Library

For each BAN

Module generation

User Option Input

Figure 3. Sequence of a bus system generation

Figure 4. A GGBA System

Figure 4 shows an example (GGBA) of a generated bus
system that consists of five BANs based on specific input to the
generation sequence shown in Figure 3. Four BANs (BANs 1
to 4) have PowerPC MPC755s, and BAN 5 is composed of a
global bus arbiter and a shared SRAM. The bus system has a
single bus subsystem.

3. Application example
The generated bus system is evaluated to see the impact of

interconnect delay in the design phase with an orthogonal
frequency division multiplexing (OFDM) wireless transmitter.

Figure 5 shows OFDM function groups to be executed and
the computation in each BAN; the details of the application are
in [1].

Figure 5. Function assignment and processing

4. Experimental results
Based on the methodology shown in Section 2, we generate

an SoC bus architecture called General Global Bus Architecture
(GGBA). With the experimental setup shown in Section 4.1, we
examine the impact of bus interconnect delay on an SoC design
and show a comparison of results in Section 4.2.

4.1. Experimental setup
As shown in Figure 6, our bus synthesis tool (BusSyn) takes

user input to configure a bus system and interconnect delay
estimated from an approximated system floorplan, producing
synthesizable Verilog HDL code for the specified custom bus
system. The floorplan was created manually. The delay
estimation was calculated using automated scripts and programs
with bus interconnect lengths from the designed floorplan given
as input. Our setup (on the right side of Figure 6) for the bus
system simulation is the same as in [1].

- Modules
- Wires

Libraries

Synthesizable
Verilog HDL

Code

User options

Bus Synthesis

VCS Seamless
CVE

Xray

Gcc User
C-code

BUS SYNTHESIS TOOL (BusSyn) SIMULATION ENVIRONMENT

SYNTHESIS ENVIRONMENT

Design
Compiler

Interconnect
Delay Estimation

Floorplan Design

Interconnect
Delay Estimation

Floorplan Design

Figure 6. Experimental Setup

4.2. Comparison of results
To show the impact of interconnect delay prediction in the

design phase, we show three different configurations of a GGBA
system: GGBA I, GGBA II and GGBA III. These three
configurations have the same bus architecture, which is shown in
Figure 4; nevertheless, the configurations vary in that each have
different memory controllers. The first GGBA system, GGBA I,
has a memory controller working with no regard to interconnect
delay on the bus between each PE and the shared memory (thus,
GGBA I may fail if implemented in a real SoC; nonetheless,
GGBA I represents a typical initial simulation with
communication across wires occurring instantaneously). The
second GGBA system, GGBA II, is generated by BusSyn based
on the methodology introduced in Section 2 and has a memory
controller that works with different estimated interconnect delays
on the shared bus. Here, the delays are provided from an
estimated chip layout as introduced in Section 2.1, and the delay
values are shown in Table 2. Finally, the third system, GGBA III
has a memory controller that operates with a maximum estimated
delay on all connections between the PEs and the shared
memory. In light of memory access, the third system is a non-

4

optimized system that can be designed if we only use worst-case
interconnect delay information in the design phase.

Table 4 shows execution times for an OFDM packet in
GGBAs I, II and III, and their percentage comparison. Here, an
OFDM packet consists of 128 real and imaginary data samples
and 32 guard data samples. Note that in Table 4 simulations are
performed with the bus clocked at 100MHz, 200MHz and
300MHz. For GGBA II and III, both of which account for
interconnect delay, the memory controller waits for an
appropriate number of bus cycles based on the required delay and
the bus cycle time; e.g., a 10ns delay requires only one bus cycle
at 100MHz but requires three bus cycles at 300MHz.

4.2.1. Comparison I
In Comparison I of Table 4, GGBA I is used as a baseline for

performance degradation according to increasing interconnect
delay. In the case of (a) 300MHz bus clock in Table 4, the
execution time shown in Comparison I increases up to 161.0% in
GGBA III against the result of GGBA I. This increase is due to
the fact that GGBA III uses overall worst-case interconnect
delay. Here, the performance degradation results from inserting
delay clocks into memory access cycles so that the system can
operate without failure. In other words, while GGBA I would
fail in a real SoC, GGBA III would work fine.

Table 4. Performance comparison

4.2.2. Comparison II

In Comparison II of Table 4, GGBA III is chosen as the
baseline for performance improvement against the execution time
of GGBA II. The impact of detailed interconnection delay
estimation in the design phase results in a 35.3% reduction in
execution time when we compare GGBA II, an interconnect
delay aware GGBA system, with GGBA III, a non-optimized
system with regard to memory access cycles. As shown in the
cases of (a) 300MHz, (b) 200MHz and (c) 100MHz bus clocks in
Table 4, different bus clocks result in different memory access
patterns due to interconnect delays. Therefore, as the bus clock
increases, the effect of detailed interconnect delay in a system is
bigger as shown in Comparison II (and Comparison I) of Table 4.

5. Conclusion
In the design of a high-speed SoC, interconnect delay

becomes a major concern. In this paper, we describe a

methodology to generate a custom bus architecture based on
accurate estimations of interconnect delay. The interconnect
delay is provided from an accurate delay modeling established
from an estimated chip floorplan. Our bus synthesis tool
(BusSyn) [1] generates a custom bus system (GGBA) that adapts
to detailed interconnect delay predictions, and the generated
system is evaluated with a user application, an OFDM transmitter,
in order to illustrate the impact of interconnect delay during the
design phase.

Our methodology gives us great benefits in performance
improvement as well as shortening SoC design time by quick bus
architecture generation. The results of our case study show that
there is performance improvement due to suitable memory access
control that adapts predicted interconnect delay. In particular,
we show up to 35.3% reduction in application execution time for
a customized bus architecture.

6. References
[1] K. Ryu and V. Mooney, “Automated Bus Generation for

Multiprocessor SoC Design,” Design, Automation and Test in
Europe (DATE'03), pp. 282-287, March 2003.

[2] IBM, “CoreConnect Bus Architecture,” [Online]. Available:
http://www-3.ibm.com/chips/techlib/techlib.nsf/productfamilies/
CoreConnect_Bus_Architecture, 2002.

[3] ARM, “AMBA Specification Overview,” [Online]. Available:
http://www.arm.com/armtech.nsf/html/AMBA?OpenDocument
&style=AMBA, 2002.

[4] CoWare, “CoWare N2C: Design Automation Technology for
System-Level Design,” [Online]. Available: http://oradev.coware.
com:7778/portal/page?_pageid=96,69853&_dad=dcowao&schema
=STAGE, 2003.

[5] C. Shin et al., “Fast Exploration of Parameterized Bus Architecture
for Communication-Centric SoC design,” Design, Automation and
Test in Europe (DATE'04), pp. 352-357, February 2004.

[6] N. Thepayasuwan and A. Doboli, “Layout Conscious Bus
Architecture Synthesis for Deep Submicron Systems on Chip,”
Design, Automation and Test in Europe (DATE'04), pp. 108-113,
February 2004.

[7] Hewlett-Packard, “CACTI,” [Online]. Available: http://research.
compaq.com/wrl/people/jouppi/ CACTI.html, 2004.

[8] Motorola, “MPC 755A RISC Microprocessor Hardware
Specification,” [Online]. Available: http://e-www.motorola.com
/webapp/sps/site/prod_summary, 2002.

[9] UMC, “chip sizer,” [Online]. Available: http://eproject.umc.
com/dse, 2004.

[10] The MOSIS Service, “TSMC 0.25 Micron Process,” [Online].
Available: http://www.mosis.org/products/fab/vendors/tsmc/
tsmc025/index.html, May 2003.

[11] A. Talpasanu and J. Davis, “Bus Interconnect Structure for a
System-on-a-Chip Multiprocessor System,” Georgia Institute of
Technology, Atlanta, GA, Technical Report GIT-CC-04-03,
[Online]. Available HTTP: http://www.cc.gatech.edu/tech_reports,
2004.

[12] T. Sakurai, “Closed-Form Expressions for Interconnection Delay,
Coupling, and Crosstalk in VLSI’s,” IEEE Transactions on
Electron Devices, vol. 40, issue 1, pp. 118-124, Jan. 1993.

[13] M. Lee, “A Fringing and Coupling Interconnect Line Capacitance
Model for VLSI On-Chip Wiring Delay and Crosstalk,” IEEE
Intern. Sym. On Circuits and Systems (ISCAS ’96), vol. 4, pp. 233-
236, May 1996.

[14] J. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley
& Sons, NY, 2002.

[15] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective Core-Based
Single-Chip System Synthesis,” Design, Automation and Test in
Europe (DATE’99), pp. 263-270, March 1999.

