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Abstract 
As feature size is scaled down to the submicron level, 

interconnect delay in the design of a high-speed System-on-a-
Chip (SoC) becomes a major concern. This concern is especially 
acute for on-chip buses.  In this paper we describe a 
methodology to generate a custom bus architecture using 
accurate estimations of interconnect delay.  To improve bus 
delay accuracy, the bus Verilog register-transfer level (RTL) 
specification was altered based on interconnect delay 
estimations.  Interconnect delay information is provided from an 
estimated chip layout.  The delay estimates for the on-chip buses 
are used early in the design phase with a corresponding impact 
on system correctness and performance.  As an example of 
interconnect delay aware bus generation, we compare three dif-
ferent General Global Bus Architecture (GGBA) configurations, 
showing that certain system blocks (the memory controllers) 
need to be modified based on interconnect delay estimation. 

The three different GGBA configurations are evaluated 
through the simulation of an orthogonal frequency division 
multiplexing (OFDM) wireless transmitter application. The 
impact of accurate interconnect delay estimation is shown 
through a 35.3% reduction in execution time between a worst-
case bus delay configuration (GGBA III) and an accurate 
interconnect delay aware GGBA configuration (GGBA II).   

1. Introduction 
This paper presents interconnect aware bus synthesis for 

System-on-a-Chip (SoC).  Due to the nature of SoC design, in 
which multiple Intellectual Property (IP) cores are placed 
together and connected with global busses, interconnect delay 
plays a significant role in system performance.  This paper shows 
that a design which takes into account accurate global bus 
interconnect delay differs by a significant amount in performance 
from a design with worst-case interconnect delay.  Namely, when 
accurate interconnect delay is included in the RTL specification 
of the buses in an SoC, the application execution time decreases 
when compared to a worst-case interconnect delay configuration 
that has a maximum estimated delays on all data paths.  
Specifically, in a comparison of accurate interconnect delay 
aware design case versus worst-case delay aware design in the 
context of an orthogonal frequency division multiplexing 
(OFDM) example, the former case has 35.3% performance 
improvement. 

Bus architecture in a multiprocessor SoC plays an important 
role in system performance.  Several efforts from industry 
provide platforms to connect intellectual property (IP) cores in an 
SoC, e.g., CoreConnect from IBM [2] and AMBA from 
ARM [3].  However, these do not integrate custom bus synthesis 
and interconnect delay. 

Several previous works focus on bus architecture synthesis 
and IP integration for a multiprocessor SoC: CoWare Napkin-to-
Chip (N2C) [4] and Shin et al. [5].  These tools, however, do not 
discuss interconnect delay aware bus architecture generation.  

Thepayasuwan et al. [6] describe layout conscious bus 
architecture synthesis.  Our work, on the other hand, utilizes 
interconnect delay prediction from a system floorplan to provide 
a more customized bus architecture that is suitable for a specific 
user’s set of applications since the methodology generates the 
bus architecture based on various user input options [1]. 

The floorplan described in this article was created manually; 
however, automated floorplanning tools such as MOCSYN [15]  
can produce SoC floorplans which can be used to automatically 
extract bus interconnect lengths. 

2. Methodology for bus generation 
We discuss interconnect delay aware bus architecture 

generation in this section.  As an example, we show a generation 
of an SoC bus system called General Global Bus Architecture 
(GGBA).  First, we present how to estimate interconnect delay in 
a system and then describe the generation of a module that is 
closely related to the interconnect delay in the system operation.  
After that, we introduce the bus architecture generation. 

2.1. Interconnect delay estimation 
The method used to estimate bus delay was to construct an 

estimated floorplan for the system, extract interconnect lengths 
from the floorplan, and model the respective global buses using 
circuit simulations tools. 

2.1.1. General Global Bus Architecture floorplan 

The construction of an estimated floorplan for the GGBA was 
facilitated by obtaining die area estimates for four PowerPC 
processing elements (PEs) used in this system.  This information 
was available from the Motorola [8] website.  Another element 
used in the floorplan was the memory module.  The area estimate 
for the SRAM module in the GGBA system was found using the 
UMC chip-sizer [9] available on the UMC website.  The UMC 
chip-sizer tool was also used to find approximate areas for a bus 
arbiter, four CPU bus interfaces (CBI), as well as a memory bus 
interface (MBI). 
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Figure 1.  GGBA estimated layout 
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An estimated floorplan of the GGBA architecture is shown in 
Figure 1.  This floorplan was manually created with designer 
input, but could have been automated by a core placement tool 
such as MOCSYN [15].  Figure 1 illustrates the floorplan of a 
global bus connecting the four processing elements and a single 
memory element.  The GGBA floorplan was used to estimate PE-
SRAM interconnect lengths; the results are listed in Table 1. 

Table 1. Interconnect length estimation for GGBA system 

 
2.1.2. Bus interconnect physical models 

The bus interconnect shown in Figure 1 represents a data bus 
connecting the four processing elements to the memory.  The bus 
width for this GGBA system is 64 bits.  Repeaters are not used in 
this design because it was found that they take up significant area 
while offering non-substantial improvements in delay and 
crosstalk.  A more detailed analysis is discussed in a technical 
report available online [11]. 

HSPICE simulations were performed on this  
bi-directional bus to calculate interconnect delay.  The HSPICE 
wire models included resistance, capacitance and inductance 
values extracted from a MOSIS run [10] for the chosen TSMC 
0.25� m technology as well as bus interconnect lengths from the 
GGBA system floorplan.  A set of series connected RLC L-
models was used to model each bus wire, with the total resistance 
[14], inductance and capacitance [12][13] being derived from the 
total length of the bus.  The interconnect length and HSPICE 
delay estimations between each processing element and the 
memory are shown in Table 1.  The method used to estimate 
interconnect delay was automated by the use of shell-scripting 
and a C program. 

2.2. Memory bus interface (MBI) module generation 
One of the effects of interconnect delay insertion in an SoC is 

in the memory access cycle count of each PE.  In this section, we 
describe an interconnect delay aware memory controller (an MBI 
module) for a system in its operation, and we also show 
automatic generation of the MBI. 

2.2.1. The operation of an MBI module 
An MBI module in a system is an interface module operating 

as a memory controller which is located between a bus and a 
memory.  The module generates PE control signals (e.g., 
aack_bar and ta_bar in PowerPC) related to memory access 
cycle and also generates memory control signals (e.g., cs_bar, 
addr, we_bar and oe_bar).  Since moving data to or from 
memory in a system is deferred due to interconnect delay, 
suitable memory controlling in the system is required to account 
for the bus delay so that the system operates without failure and 
with maximum performance.  A method to ensure suitable 
memory control is to extend every memory access cycle 
according to the length of the bus interconnect delay.  For 
example, we control two pins of the PowerPC MPC755 for the 
purpose of memory cycle extension: address acknowledge 
(aack_bar) and transfer acknowledge (ta_bar).  Here, the 
aack_bar signal terminates an address bus cycle while the ta_bar 
terminates a data bus cycle.  To extend each memory cycle, we 

delay the control signals in a memory access cycle by inserting 
dummy clock cycles in the memory controller.   

2.2.2. The generation of an MBI module 
Before generating the MBI module, with regard to the 

estimated interconnect delay shown in Section 2.1, we calculate 
total delay including the time taken to move controls and data on 
the bus in two directions (e.g., from a PE to memory and vice 
versa) and the time taken to access memory in a read operation.  
However, since transmitting the signals for controls and data on 
the bus to a shared memory has the same direction to the memory 
in a write operation, we only consider the effect of bus 
interconnect delay in a read operation.  

Table 2. Estimated total delay of paths between each PE and 
a shared memory 

 
Table 2 shows estimated delays for the GGBA estimated 

layout shown in Figure 1.  The second column shows estimated 
interconnect delays described in Section 2.1, and the third 
column shows bidirectional delays for a read operation.  The 
fourth column shows memory access time for a 2 MByte SRAM, 
where the access time is estimated by using CACTI 3.0, which is 
an integrated cache access time, cycle time, area, aspect ratio and 
power model [7].  Finally, the fifth column is the summation of 
the previous three columns, that is, total delays considered in 
read operations. 

Table 3 shows the number of clock delay cycles that will be 
inserted into a memory cycle for the cases that a GGBA system 
has three different bus clocks, respectively.  The total delays 
shown in Table 2 are divided by each bus clock period in order 
to obtain the number of clock delays shown in Table 3. 

Table 3. Number of clock delays in data paths 
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Figure 2. Sequence of MBI module generation 

Figure 2 describes the sequence of MBI module generation, 
which is a module generation procedure of our bus synthesis tool 
(BusSyn) that will be described in Section 2.3.  With the input of 
interconnect delay shown in Table 1, the number of clock cycles 
required to be inserted for a memory access cycle is calculated in 
the second step.  Then, based on the user input options [1] that 
configure an SoC bus system with shared memory, an MBI 
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module is extracted from a Module Library that contains the 
respective module as a library component [1].  The module is 
described in Verilog HDL and has pre-defined delay parameters 
which model corresponding clock delays to memory access 
cycles.  Finally, the delay parameters are updated with the 
number of clocks calculated in a previous state. 

2.3. Bus system generation 
The flowchart in Figure 3 shows the sequence for bus system 

generation in our bus synthesis tool (BusSyn) [1].  First, BusSyn 
takes user input options for a bus system to be generated, and 
based on these options, BusSyn generates the required bus access 
nodes (BANs) after generating required modules for the 
BANs [1].  The MBI module described in Section 2.2 is 
generated at this time based on the user options.  BusSyn 
subsequently assembles the BANs into required bus subsystems, 
each of which consists of one or more BANs connected together 
using bus components.  After that, if the bus system the user 
wants has more than one bus subsystem, the generated bus 
subsystems are integrated into a resulting bus system.  Otherwise, 
the generated single bus subsystem becomes a bus system.  
Finally, BusSyn writes synthesizable Verilog HDL code for the 
generated bus system. 

Bus Access Node (BAN) generation

Synthesizable
Verilog HDL code

Wire
Library

Bus System Generation

BusSyn

Bus Subsystem Generation

For each Bus Subsystem

# of Subsystem != 1

Y

N

Module
Library

For each BAN

Module generation
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Figure 3. Sequence of a bus system generation 

 
Figure 4.  A GGBA System 

Figure 4 shows an example (GGBA) of a generated bus 
system that consists of five BANs based on specific input to the 
generation sequence shown in Figure 3.  Four BANs (BANs 1 
to 4) have PowerPC MPC755s, and BAN 5 is composed of a 
global bus arbiter and a shared SRAM.  The bus system has a 
single bus subsystem. 

3. Application example 
The generated bus system is evaluated to see the impact of 

interconnect delay in the design phase with an orthogonal 
frequency division multiplexing (OFDM) wireless transmitter.    

Figure 5 shows OFDM function groups to be executed and 
the computation in each BAN; the details of the application are 
in [1].  

 
Figure 5. Function assignment and processing 

4. Experimental results 
Based on the methodology shown in Section 2, we generate 

an SoC bus architecture called General Global Bus Architecture 
(GGBA).  With the experimental setup shown in Section 4.1, we 
examine the impact of bus interconnect delay on an SoC design 
and show a comparison of results in Section 4.2.   

4.1. Experimental setup 
As shown in Figure 6, our bus synthesis tool (BusSyn) takes 

user input to configure a bus system and interconnect delay 
estimated from an approximated system floorplan, producing 
synthesizable Verilog HDL code for the specified custom bus 
system.  The floorplan was created manually.  The delay 
estimation was calculated using automated scripts and programs 
with bus interconnect lengths from the designed floorplan given 
as input.  Our setup (on the right side of Figure 6) for the bus 
system simulation is the same as in [1].   
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Figure 6. Experimental Setup 

4.2. Comparison of results 
To show the impact of interconnect delay prediction in the 

design phase, we show three different configurations of a GGBA 
system: GGBA I, GGBA II and GGBA III.  These three 
configurations have the same bus architecture, which is shown in 
Figure 4; nevertheless, the configurations vary in that each have 
different memory controllers.  The first GGBA system, GGBA I, 
has a memory controller working with no regard to interconnect 
delay on the bus between each PE and the shared memory (thus, 
GGBA I may fail if implemented in a real SoC; nonetheless, 
GGBA I represents a typical initial simulation with 
communication across wires occurring instantaneously).  The 
second GGBA system, GGBA II, is generated by BusSyn based 
on the methodology introduced in Section 2 and has a memory 
controller that works with different estimated interconnect delays 
on the shared bus.  Here, the delays are provided from an 
estimated chip layout as introduced in Section 2.1, and the delay 
values are shown in Table 2.  Finally, the third system, GGBA III 
has a memory controller that operates with a maximum estimated 
delay on all connections between the PEs and the shared 
memory.  In light of memory access, the third system is a non-
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optimized system that can be designed if we only use worst-case 
interconnect delay information in the design phase.     

Table 4 shows execution times for an OFDM packet in 
GGBAs I, II and III, and their percentage comparison.  Here, an 
OFDM packet consists of 128 real and imaginary data samples 
and 32 guard data samples.  Note that in Table 4 simulations are 
performed with the bus clocked at 100MHz, 200MHz and 
300MHz.  For GGBA II and III, both of which account for 
interconnect delay, the memory controller waits for an 
appropriate number of bus cycles based on the required delay and 
the bus cycle time; e.g., a 10ns delay requires only one bus cycle 
at 100MHz but requires three bus cycles at 300MHz. 

4.2.1. Comparison I 
In Comparison I of Table 4, GGBA I is used as a baseline for 

performance degradation according to increasing interconnect 
delay.  In the case of (a) 300MHz bus clock in Table 4, the 
execution time shown in Comparison I increases up to 161.0% in 
GGBA III against the result of GGBA I.  This increase is due to 
the fact that GGBA III uses overall worst-case interconnect 
delay.  Here, the performance degradation results from inserting 
delay clocks into memory access cycles so that the system can 
operate without failure.  In other words, while GGBA I would 
fail in a real SoC, GGBA III would work fine. 

Table 4. Performance comparison 

 
4.2.2. Comparison II 

In Comparison II of Table 4, GGBA III is chosen as the 
baseline for performance improvement against the execution time 
of GGBA II.  The impact of detailed interconnection delay 
estimation in the design phase results in a 35.3% reduction in 
execution time when we compare GGBA II, an interconnect 
delay aware GGBA system, with GGBA III, a non-optimized 
system with regard to memory access cycles.  As shown in the 
cases of (a) 300MHz, (b) 200MHz and (c) 100MHz bus clocks in 
Table 4, different bus clocks result in different memory access 
patterns due to interconnect delays.  Therefore, as the bus clock 
increases, the effect of detailed interconnect delay in a system is 
bigger as shown in Comparison II (and Comparison I) of Table 4. 

5. Conclusion 
In the design of a high-speed SoC, interconnect delay 

becomes a major concern.  In this paper, we describe a 

methodology to generate a custom bus architecture based on 
accurate estimations of interconnect delay.  The interconnect 
delay is provided from an accurate delay modeling established 
from an estimated chip floorplan.  Our bus synthesis tool 
(BusSyn) [1] generates a custom bus system (GGBA) that adapts 
to detailed interconnect delay predictions, and the generated 
system is evaluated with a user application, an OFDM transmitter, 
in order to illustrate the impact of interconnect delay during the 
design phase.  

Our methodology gives us great benefits in performance 
improvement as well as shortening SoC design time by quick bus 
architecture generation.  The results of our case study show that 
there is performance improvement due to suitable memory access 
control that adapts predicted interconnect delay.  In particular, 
we show up to 35.3% reduction in application execution time for 
a customized bus architecture. 
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