
An Approach to Energy-Error Tradeoffs in Approximate
Ripple Carry Adders

Zvi M. Kedem�, Vincent J. Mooney��‘, Kirthi Krishna Muntimadugu�‘ and Krishna V. Palem�‘

�Courant Institute of Mathematical Sciences
New York University, New York, USA, Email: kedem@nyu.edu

�School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, USA, Email: mooney@gatech.edu

�School of Electrical & Electronic Engineering and School of Computer Engineering
Nanyang Technological University, Singapore, Email: vjmooney@ntu.edu.sg

�Department of Electrical and Computer Engineering
Rice University, Houston, Texas, USA, Email: (kirthi.krishna, palem)@rice.edu

‘NTU-Rice Institute of Sustainable and Applied InfoDynamics (ISAID)
Nanyang Technological University, Singapore

Abstract—Given a 16-bit or 32-bit overclocked ripple-carry adder, we
minimize error by allocating multiple supply voltages to the gates. We
solve the error minimization problem for a fixed energy budget using a
binned geometric program solution (BGPS). A solution found via BGPS
outperforms the two best prior approaches, uniform voltage scaling and
biased voltage scaling, reducing error by as much as a factor of 2.58X
and by a median of 1.58X in 90nm transistor technology.

Index Terms—Approximate Adders, Voltage Scaling, Low Energy
Circuits, Geometric Programming

I. INTRODUCTION

In this paper we introduce a novel approach to minimizing error
in a Ripple Carry Adder (RCA) due to overclocking. We call
our approach the Binned Geometric Program Solution (BGPS). We
assume that an energy budget is fixed and that some small errors
can be tolerated; thus, our goal is to minimize the errors. We have
freedom to assign up to four distinct supply voltages to the gates of
the RCA. We do not address physical design and floorplanning in
this paper, but instead leave these issues for future work.

II. TECHNOLOGY BACKGROUND AND PRIOR WORK

This paper presents a contribution to minimization of energy
and error in so-called “approximate arithmetic” [1]. Very briefly,
Chakrapani et al. [1] proposed reducing the supply voltage of
VLSI arithmetic circuits beyond the point where the critical path is
guaranteed to not be violated. This could result in an erroneous output
of the circuit but, as shown by Chakrapani et al., can also be used
in many applications which do not require strict 100% accuracy of
computed values such as in audio and video signal processing. Such
circuits which are “overclocked,” being operated at a frequency higher
than required to guarantee 100% accuracy, we call “approximate
circuits.”

There are other techniques to reduce switching power of a circuit.
Techniques such as the ones by Blaauw et al. [2] and Broderson
et al. [3] are adaptive which means that the throughput of the circuit
is based on the workload. Non-adaptive techniques typically operate
the circuit at multiple voltages which might rely on circuit imple-
mentation techniques like transistor sizing for energy efficiency [4].
Manzak and Chaktrabarti [5] as well as Yeh et al. [6], [7] present
techniques that are also non-adaptive but which operate the critical
paths of the circuit at higher voltages than the non-critical paths and
also use transistor sizing.

Among the ones that use overclocking, one of them is broadly
know as the “Razor” approach [8], [9] – championed by researchers

at the University of Michigan – which allows errors at the circuit
level, but only temporarily (for a few clock cycles). In this case, errors
are corrected by inserting delay in order to continue from a previous
known “correct” logic state. It is assumed that prior approaches to
handle flip-flops and meta-stability issues [8], [9] can be used.

George et al. [10] presented a biased voltage scaling (BIVOS)
for probabilistic ripple carry adders under the assumption that error
sources (e.g., thermal noise) are uniformly random in time and space.
The claim was that a geometric scaling of the probability of error at
each bit position across an adder results in lower average error for
the same energy consumption when compared to a uniform scaling
of probability of error. The modeling and analysis in [10] built on
the result shown by Cheemalavagu et al. [11] which described a
probabilistic CMOS switch and the direct relationship between the
supply voltage (energy consumption) and the probability of error. In
such a probabilistic gate, an error at the output of the gate occurs
based only on its supply voltage. Therefore, to establish a supply
voltage allocation scheme, a geometric scaling of probability was
introduced by utilizing the exact relationship between the probability
of error and the supply voltage of a building block (in their case
it was a full adder). This scheme cannot be directly applied to
approximate circuits because there is no straightforward relationship
between probability of error at a given bit position and its supply
voltage. Therefore, it is not trivial to determine a supply voltage
scheme from a required scaling of probability of errors across bit
positions.

The primary distinctions between the previous approaches and
our target problem in this paper are that we (i) present a rigorous
mathematical model for the output error and energy consumption
of an approximate RCA and also (ii) present a circuit level opti-
mization methodology for multiple supply voltages whereas the prior
approaches have either been ad-hoc circuit level approaches or algo-
rithmic level optimizations (altering the algorithm being executed).

In this paper, we propose a methodology to find an assignment
of multiple voltages to an approximate ripple carry adder circuit
to minimize error for a given energy consumption. The first design
constraint that arises out of this design methodology is the number
of distinct voltages that could be used in practice in a fabricated
chip. Circuit designers are using an increasing number of different
voltages in their architectures. Typical high end chips seem to have
four different voltages [12], [13]. To benefit from having multiple
voltages on the die, the circuit designer has to overcome the challenge
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Fig. 1. Gate level diagram of a 3-bit ripple carry adder

of creating power distribution networks that feed from the voltage
regulator modules that supply all the devices using the fewest number
of interconnect layers. But the important point to note here is that the
number of different voltages is the bottleneck here and not the actual
magnitude of each voltage. The circuit designer has the freedom,
albeit at design level, to choose the number of voltage levels and
the exact values of the different voltages. With the freedom of using
multiple voltage levels the use of voltage shifters becomes a necessity
at least in some cases such as when a circuit with lower supply voltage
is driving a circuit with higher supply voltage (and the difference in
the supply voltages is not negligible) and when the output of a circuit
is being stored in a register. It has been shown by Chang et al. [14]
that the area/delay overhead of level shifters for using multiple supply
voltages can be relatively small. Hence in this paper for the sake of
simplicity of our mathematical model and experimental methodology
we do not consider the overhead of voltage level shifters.

III. APPROXIMATE RCA ERROR AND ENERGY MODELS

We will consider an n-bit ripple-carry adder (RCA). Binary num-
bers a D an�1 : : : a0 and b D bn�1 : : : b0 to be added are unsigned
in the range 0; : : : ; 2n�1 and have the standard binary representation.
The addition of a and b results in an .nC1/-bit number s D sn : : : s0.
Thus, sum s is computed in an RCA as sk D ak ˚ bk ˚ ck for
0 � k � n � 1. The sequence of carries c is computed as follows. c0

is input (and is zero for addition which is the only case considered
in this paper) while ckC1 D .ak ˚ bk/ � ck C .ak ˚ bk/ � ak for
0 � k � n � 1. Note that we have yet to define sn; in fact, the last
sum bit sn is equal to the last carry bit cn.

We use two XOR gates and a MUX for our full adder (FA) design
in this paper, as can be seen in Fig. 1; while not necessarily the
fastest possible or the least area, for simplicity we nonetheless use
two XOR gates and a MUX for FA implementation in this paper.
Each gate in Fig. 1 has an index ` 2 f1; 2; : : : ; 9g; for each gate `

with supply voltage �`, we use �`.�`/ to denote the worst case delay
of the gate at the specified voltage.

A. Carry chains in ripple carry adders

Given an n-bit RCA and two specific n-bit binary numbers a D
an�1an�2 : : : a0 and b D bn�1bn�2 : : : b0 as inputs to the RCA,
define ax D ax

nax
n�1ax

n�2 : : : ax
0 and bx D bx

nbx
n�1bx

n�2 : : : bx
0 where

ax
i

D ai ; bx
i

D bi for 0 � i � n � 1 and ax
n D bx

n D 0. A carry
chain is said to be present in the n-bit RCA with inputs a and b from
position i to position j if and only if

� ax
i

D bx
i

D 1. This case is referred to as the generation of a
carry.

� ax
w ¤ bx

w . This case is referred to as the propagation of a carry.
� ax

j
D bx

j
. If ax

j
D 0, the carry is said to be killed and if ax

j
D 1

another carry is said to be generated. In both the cases the carry
chain that was generated at position i ends at position j .

0 1 1

0 0 1

0

0

1 1

0 1

0 0

0 0

1 0 00 0 1 0 0

input a

input b

sum

26position 37 5 4 1 0

Fig. 2. An example of two contiguous carry chains in a binary addition
using an RCA

where 0 � i < w < j � n (or, if j D i C 1, 0 � i < j � n and
i ¤ n � 1).

If there is a carry chain from i to j , we will set a boolean variable
Cij to 1. Also, for a carry chain from position i to position j , we
have si D 0 ˚ ci , ck D 1 and sk D 0, for k 2 fi C 1; : : : ; j � 1g;
and cj D 1, sj D 1, and cj C1 D aj (D bj ). Thus, if we know that
there is a carry chain from position i to position j , we know that
siC1 D siC2 D : : : D sj �1 D 0 and sj D 1 while si depends on ci .

While there can be more than one carry chain in a single addition,
it turns out that multiple carry chains cannot overlap [15]. Fig. 2
shows an example where a carry chain starts at bit position 2 and
is killed at position 4, thus C24 D 1; another carry chain starts at
position 4 and is killed at position 6, C46 D 1.

B. Modeling the error at the output of an approximate RCA

We assume that the clock cycle time (D) of an adder is never
lower than the worst-case propagation delay of a single full adder.
We further assume that at the start of each addition, all carry bits
have been reset to zero. Considering an approximate RCA, the result
of these two assumptions is that there is a possibility of error at the
output of an RCA only if there is propagation of carry: if there is
no propagation of carry, the clock cycle time is sufficient for the full
adders to compute the sum outputs of the RCA. Stated in a different
way, there may be an error at the output only if there are carry chains
in the approximate RCA. Hence in developing an error model for an
approximate RCA, we will consider the behavior of error at the output
of an RCA in the presence of carry chains.

We call the longest delay path with respect to a particular sum
bit sk as the "sum path of sk ." In an RCA, the sum path of sk

is the series of gates in the RCA which constitutes the longest
delay path, assuming worst-case gate delays. This path is essential in
computing whether there is enough time to always compute correctly
a particular sum bit sk . Of course, the true critical path for sum sk

depends on inputs a and b; however, the result is that any true critical
path – whose delay exceeds that of a single FA – comes from a
prior bit position: for sk , then, the true critical path given inputs a
and b will come from bit position i where i < k. To capture all
such possibilities, we define dik to be the time between the correct
computation of sum bit sk and the time when the inputs are provided
to the RCA circuit thus triggering a true critical path for sk starting
from bit i . Inputs a and b are provided to the RCA at some time
tin. Let tk be the time when the correct value of sk is generated
(assuming worst-case delays of all gates). Then dik D tk � tin. d
denotes the .n C 1/ � .n C 1/ matrix of all dik , 0 � i < k � n.
Properly speaking, d for a particular RCA in a particular technology
is a function of the critical paths of the sum bits of the RCA, �` for
each gate ` in any critical path of any sum bit, and �`.�`/; however,
for brevity, in this paper we will simply refer to d without specifying
all the input values on which d depends. For additional details please
refer to [15].



TABLE I
MAXIMUM AND MINIMUM PROPAGATION DELAYS OF THE XOR GATE AND

THE MUX IN 90NM TECHNOLOGY

Gate �`.1:2V / (pico-sec) �`.0:8V / (pico-sec)
XOR 33:3 55:2
MUX 30:5 51:2

We will determine dik as a sum of worst case propagation delays
of the gates in an RCA. In conventional digital circuit design,
intermediate outputs of a circuit are ignored as long as the final
outputs are correct, but in overclocked circuits intermediate results
could be construed as the final outputs and hence cannot be ignored
during modeling. This warrants a consideration of worst-case vs.
average-case vs. best-case propagation delays. In this paper, we do
not consider spatial or temporal parameter variations. We only model
the effect of different supply voltages. We start with an analysis of
approximate RCAs assuming worst-case delays. While we do not
have a formal proof to show that consideration of average and best
case delays will result in lower error rates, we have found empirically
for an RCA fed inputs having a uniform statistical distribution,
increasing the delay increases the errors in the adder at least 98% of
the time [15].

Example 1. Consider the 3-bit ripple carry adder shown in Fig. 1.
Assume that the inputs are such that there is a carry chain from
position 0 to position 2. One instance of such inputs are a D 011,
b D 001 and c0 D 0. For this instance, a carry bit of 1 is generated at
position 0, is propagated through position 1 and is killed at position
2. For this scenario, d02 D t2 � tin, where t2 is the time when
the correct s2 is generated. Assuming worst-case gate delays, d02

would be equal to the sum of worst-case propagation delays of the
critical path shown in Fig. 1 as a dotted line from bit position 0

to the sum output in bit position 2. That means in the worst case,
d02 D �1.�1/ C �3.�3/ C �6.�6/ C �8.�8/. For our target technology
of 90nm (Table I shows the corresponding delay values), considering
maximum supply voltages for all the gates, i.e., �1 D �3 D �6 D
�8 D 1:2V , we find that d02 D 33:3 ps C30:5 ps C30:5 ps C33:3 ps
D 127:6 ps.

With calculations similar to d02, we find the following:

d D

0
BB@

� 97.1 ps 127.6 ps 124.8 ps
� � 97.1 ps 94.3 ps
� � � �
� � � �

1
CCA

Note that multiple carry chains can be handled by d. For example,
for Fig. 2, entries d24 and d46 would be used for sum bits s4 and
s6, respectively.

C. An error model for an approximate RCA based on carry chain
analysis

In this subsection, we will develop a function for the error at the
output of an overclocked RCA. Note that we assume all bits in the
RCA are initially set to zero [15]. We define the error at the output
of the RCA as a function of a, b, d and D. We define sa to be the
sum actually read out; due to overclocking, sa may be different from
s D aCb. We now proceed to characterize the absolute magnitude of
the error j sa � s j. We define an RCA’s indicator function as follows:
Ik.a; b; d; D/ D�

1 if 9 i < k < j such that Cij D 1 and dik > D

�1 if 9 i < k D j such that Cij D 1 and dik > D

0 otherwise.

(1)

The indicator function is now used to develop a function to
compute the error at the output of an approximate RCA. We define
Er.a; b; d; D/ Dj Pn

kD0.sa
k

� sk/2k j to be the error introduced
during the computation, assuming non-varying deterministic worst-
case delays.

Theorem 1.

Er.a; b; d; D/ D
nX

kD0

Ik.a; b; d; D/2k : (2)

Proof: For a detailed proof please refer to [15].
Theorem 1 (Eq. 2) gives Er.a; b; d; D/ which is the error at the

output of the target RCA for two specific inputs. The average of this
error over all possible inputs is

Eravg.D; d/ D avg
0�a;b�2n�1

Er.a; b; d; D/: (3)

This is a sum of 22n terms, which is not feasible to compute in
a straightforward manner for large n. We will now transform the
expression in Eq. 3 into a form that can be computed in O.n2/.

Recall that, given our assumptions, an error can occur only if there
is a carry chain in the computation. We then note that the total error
in a computation is the sum of the errors (if any) in the individual
carry chains. The error introduced by a carry chain from i to j is

Ercc.D; i; j; d/ D
jX

kDiC1

.sa
k

� sk/2k D
jX

kDiC1

I cc
k

.D; i; j; d/2k :

(4)
where

I cc
k

.D; i; j; d/ D

�
1 if i < k < j and dik > D

�1 if i < k D j and dik > D

0 otherwise.

(5)

It can be shown that:

Er.a; b; d; D/ D
X

all i;j for which Cij D1

Ercc.D; i; j; d/

A proof of the above is available in [15]. We omit the proof for
brevity.

One way to compute the average total error at the output of an
adder is by summing the errors of all possible carry chains weighted
by the probability of their occurrence:

Eravg.D; d/ D
X

0�i<j �n

pij Ercc.D; i; j; d/; (6)

where pij is the probability that there exists a carry chain from i to
j . Thus, the average total error is evaluated by computing and adding
n.n C 1/=2 terms only [15].

The probabilities pij can be computed given the distributions of
the inputs a and b. By assuming a uniform distribution of inputs it

is easy to conclude that pij D
�

1
2

�j �iC2
(when j ¤ i C 1) and

pij D
�

1
2

�3
(when j D i C 1); a proof is available in [15]. In real

world applications, this might not be true. Therefore, if the knowledge
about the probability distribution of the actual inputs is known then
that could be used instead of using P.ai D 0/ D P.bi D 0/ D
P.ai D 1/ D P.bi D 1/ D 1

2 . If the case is such that instead of the
probability distribution we have a candidate input benchmark, then
the probability distribution could be computed using the benchmark.
In this paper, we leave the case of non-uniform input bits for future
work.



IV. ENERGY MODEL FOR AN APPROXIMATE RCA

The total energy consumption in an RCA consists of two separate
components, the dynamic and static energy consumption. Our esti-
mate of the dynamic energy consumption at the gate level of a CMOS
circuit of an RCA is Edyn D PN

`D1 E
dyn
`

.�`/w` where E
dyn
`

.�`/ is
the dynamic energy consumption of the `th gate being operated at
supply voltage �`, and w` is the average switching activity of the
`th gate in a single clock cycle (assuming a non-pipelined adder). w`

for gates in the case of an RCA is approximately estimated as the
ratio of the number of logic changes of gate ` to the total number
of additions A simulated. Our estimate of static energy consumption
is Estat D PN

`D1 P stat
`

.�`/D where P stat
`

.�`/ is the static power
consumption of the `th gate being operated at supply voltage �` and
D is the clock cycle time of the circuit. Therefore, the total energy
consumption is

E D
NX

`D1

�
E

dyn
`

.�`/w` C P stat
`

.�`/D
�

(7)

where N is the total number of gates in the adder.
For an approximate RCA, Eq. 7 may be used if we find the

switching activities for the gates when overclocking. Due to over-
clocking, the sum actually read might be different from the correct
sum. The fact of whether at a given bit position the correct sum bit
was computed in time or not is modeled using the indicator function
in Eq. 1 in Subsection III-C. We use a similar model of an indicator
function to check if a particular gate in the RCA had a logic change
within the clock cycle time and, based on that, re-evaluate (reduce)
the switching activity, denoted as wa

`
, to reflect this [15].

Based on the revised estimates of the switching activities, the total
energy consumption of an approximate RCA is as follows

Ea D
NX

`D1

�
ED

`
.�`/wa

`
C P S

`
.�`/D

�
(8)

From Section III, �`.�`/ denotes the worst-case propagation delay
of the `th gate when its supply voltage is �`. We compute the average
dynamic energy consumption and worst case propagation delays of all
the gates in our process technology through simulations. It is known
that the dynamic energy consumption of a gate is proportional to the
square of the input supply voltage as well as that the propagation
delay of a gate is inversely proportional to its supply voltage. To
represent E

dyn
`

.�`/ in terms of �`.�`/, we will use the curve-fit that
the average dynamic energy consumption of a gate is proportional to
the inverse square of its worst case propagation delay, i.e.,

E
dyn
`

.�`/ / 1

�2
`
.�`/

D �`
1

�2
`
.�`/

(9)

where �` is the proportionality constant for the `th gate. Thus �` is
computed separately for each type of gate [15]. For example in the
design of the RCA that we consider there are two types of gates,
XOR and MUX.

Substituting the relationship between average dynamic energy
consumption and worst-case propagation delays from Eq. 9 into Eq. 8,
we derive the following:

Ea D
NX

`D1

 
�`

1

�2
`
.�`/

wa
`

C P stat
`

.�`/D

!
(10)

V. MINIMIZING AVERAGE ERROR OF AN APPROXIMATE RCA
USING GEOMETRIC PROGRAMMING

In this section we describe our procedure to formulate our target
problem, which is minimizing average error of an approximate RCA

under a given energy budget, as a geometric program [16]. Then
we present our approach to perform supply voltage binning on the
solution obtained from the geometric program.

We form an optimization problem consisting of an objective
function and one or more constraint functions. The objective function
is the average error of an approximate RCA as given in Eq. 6 in
Subsection III-C. The average error as shown in Eq. 6 is a function
of a, b, d and D. The clock cycle time D is an independent variable,
and a and b are inputs, but d is a matrix whose elements are a
function of the adder topology, resulting critical path delays and gate
supply voltages. We do not alter the adder topology but instead vary
the adder supply voltages which directly alters d. We found that a
formulation of error optimization in terms of d – represented in terms
of ε.v/ – to be much simpler than a direct formulation in terms of v,
where v is the vector of the voltages of all the gates in the RCA [15].

Therefore we consider the gate propagation delays as the decision
variables. The RCA under consideration consists of N gates. We need
to compute an optimized supply voltage allocation scheme, which is
the exact assignment of supply voltages to the individual gates. To
do that we will compute delays ε.v/ D f�1.�1/; �2.�2/; : : : ; �N .�N /g
for which the average error is minimized under the constraint that the
total energy consumption is below the total energy budget. These gate
delays will in turn determine the supply voltage allocation scheme.

The optimization problem is to minimize Eq. 6 which is

Eravg.D; d/ D
X

0�i<j �n�1

pij Ercc.D; i; j; d/; (11)

subject to the following two constraints and assumptions.

1) min-delay` � �`.�`/ � max-delay`; where min-delay` and
max-delay` depend on the transistor technology while the delay
additionally depends on the type of component and fanout.

2) The total energy consumption of all the gates is bounded from
above by the given energy budget. Thus,

Ea D
NX

`D1

 
�`

1

�2
`
.�`/

wa
`

C P stat
`

.�`/D

!
� Energy

Budget

In general the full class of optimization problems could be classi-
fied into two categories, linear optimization problems (LP) and non-
linear optimization problems (NLP). The objective function of our
optimization problem in this paper, which is shown in Eq. 11, is not
a linear function. Therefore, our solution is to formulate the problem
of minimizing Eq. 11 subject to the constraints above as a geometric
program [16] and then solve it. To model our target problem as
a geometric program, the objective function and all the constraints
should be in the form of a posynomial [16]. Our objective function is
not a posynomial. So we will compute a posynomial approximation
of our objective function based on the methodology given in Section
8.2 of [16]. The approach of computing a posynomial approximation
of a given function and then using geometric programming to solve it
is referred to as signomial programming, discussed in detail in [16].
The following is a mathematical description of the approximations
and redefinitions that we use. We will redefine the indicator function
I cc

k
(given in Equation 5) as:

Ik.D; i; j; d/ D
(

1 if dik > D; Cij D 1; i < k � j

0 otherwise.
(12)

Using this definition, Ercc.D; i; j; d/ is transformed as follows

Ercc.D; i; j; d/ D
jX

kDiC1

I cc
k

2k D
j �1X

kDiC1

Ik2k � Ij 2j (13)



where I cc
k

is shown in Equation 5. Because the new indicator function
Ik is a non-negative function, the negative sign appears in the
definition of Ercc.D; i; j; d/. Thus the combination of the indicator
function in Eq. 5 and the error function in Eq. 4 in Section III-C
results in the same value as the redefined indicator function in Eq. 12
and transformed error function in Eq. 13.

We approximate Ik by 1=.1 C e�2�.dik�D// [15]. For � � 0,
sgn.x/ � tanh.�x/, and we use � D 200.1 Thus, our continuous and
differentiable approximation of Eq. 13 is Ercc.D; i; j; d/

�
j �1X

kDiC1

1

1 C e�2�.dik�D/
2k � 1

1 C e�2�.dij �D/
2j

where dij are linear functions of �k.�k/. We use the monomial
approximation technique (Section 8.2 of [16]) for this expression.
This results in Ercc.D; i; j; d/

�
j �1X

kDiC1

1

1 C e�2�.dik�D/
2k � 1

1 C e�2�.dij �D/
2j

� c�a1

1 .�1/�a2

2 .�2/ : : : �aN

N .�N / (14)

where c 2 RC and am 2 R for all 1 � m � N .
We then construct the objective function Er.D; d/ as a posyno-

mial [16]. For detailed examples please see [15].
As ε.v/ are the decision variables, we now express d in terms of

ε.v/ and write the average error as Eravg.D; ε/. Then the problem is
reduced to minimizing a posynomial subject to posynomial inequality
constraints, giving us a geometric program in a standard form:

Minimize Eravg.D; ε/ D
CX

j D1

cj �
a1

j

1 .�1/�
a2

j

2 .�2/ : : : �
aN

j

N
.�N / (15)

subject to min-delay` � �`.�`/ � max-delay`; k D 1; : : : ; N

and
NX

`D1

 
�`

1

�2
`
.�`/

wa
`

C P stat
`

.�`/D

!
� Energy Budget

where C is the number of possible carry chains in an n-bit adder
and N is the number gates in the adder. In the case of an n D 16-bit
adder, C D n.nC1/

2 D 156 [15].
We use a standard geometric programming toolbox [16], [17] to

solve this program. The solution of the first iteration is used to
compute the posynomial approximation again, until the objective
value starts to converge. This gives us the final allocation of delays
to the components such that the average error is minimum for the
given constraints. Using the delays allocated to the components, we
can obtain the voltages to be supplied to them.

The solution from the geometric program in Eq. 15, in principle,
can assign any voltage to any gate under the given constraints. For
a practical application of the solution we need to limit the number
of supply voltages and also the number of voltage islands. We will
present our approach to limit the number of supply voltages. Let
the possible set of supply voltages be V and the maximum number
of voltages be M� . We then pick a M�-combination of elements
from V . The voltages from this subset are then assigned to the gates
in the RCA with gates having a higher voltage in the geometric
program solution getting a higher voltage from this subset. This
process is referred to as binning. We exhaustively search through
all possible binning schemes. Using Eq. 11 and the relationship
between propagation delay and supply voltage we can compute a

1This particular value of � was chosen empirically by observing the plots
of the two functions, sgn.x/ and tanh.�x/, and that the transition from �1
to 1 is fast enough.

TABLE II
PROPAGATION DELAY AND SUPPLY VOLTAGE VALUES FROM THE

GEOMETRIC PROGRAM AND CORRESPONDING BINNED SUPPLY VOLTAGE

VALUES FOR THE GATES IN FIG. 1

Gate Index �` (ps) �` (volts) Binned �` (volts)
1 44.6 0.84 0.8
2 46.9 0.8 0.8
3 34.0 1.16 1.2
4 44.6 0.84 0.8
5 40.8 0.92 0.9
6 33.3 1.2 1.2
7 39.3 0.96 1.0
8 38.5 0.98 1.0
9 33.3 1.2 1.2

closed form solution of the average error. Our algorithm for supply
voltage binning is explained in detail in [15]. We refer to the binned
solution of the geometric program as the Binned Geometric Program
Solution (BGPS) in this paper.

As an example, we present the solution obtained from the geomet-
ric program and binning for the 3-bit RCA in Fig. 1 in Table II.

VI. SIMULATION FRAMEWORK FOR RCA EXPERIMENTATION

For comparison, we will consider the biased voltage scaling
(BIVOS) approach of George et al. [10] modified as follows. First,
we split the number of bits equally into four sets: for 16 bits, there
are four sets of four bits each, while for 32 bits, there are four sets
of 8 bits each. Then, we tried the following possible combinations
of four distinct voltages, from 0.8V to 1.2V, assuming a step size of
0.1V: (i) f0:8V, 0:9V, 1:0V, 1:1Vg, (ii) f0:8V, 0:9V, 1:0V, 1:2Vg,
(iii) f0:8V, 0:9V, 1:1V, 1:2Vg, (iv) f0:8V, 1:0V, 1:1V, 1:2Vg and
(v) f0:9V, 1:0V, 1:1V, 1:2Vg where the voltages are assigned from
lowest to highest from the LSB to the MSB. For example, 0.8V is the
supply voltage for the least significant four bits (in the case of a 16-
bit RCA) or eight bits (for the 32-bit RCA) in four out of five of the
cases above. We call this approach “naive-BIVOS” or n-BIVOS for
short. In addition to n-BIVOS, we will also compare our approach
with uniform voltage scaling or UVOS. All the simulations were
performed in HSPICE using a 90nm process technology. Each result
presented has been computed as an average over 10,000 additions
with inputs drawn from a uniform distribution. The average error
magnitude is computed by taking an average, over all of the additions
simulated, of the absolute magnitude of the difference between the
correct output and the overclocked approximate output. On the other
hand, the average energy consumption is measured from our HSPICE

simulations by taking an average, over all of the additions, of the
total energy consumption.

VII. EXPERIMENTAL RESULTS

Table III summarizes the key results of this paper. A solution
found via BGPS (takes about 5 min for a 16-bit RCA) outperforms
the two best prior approaches, UVOS and n-BIVOS, by as much as
a factor of 2.58X and by a median of 1.58X. Though the target
problem in this paper is to minimize error for a given Energy Budget,
the dual problem would be to minimize energy for a given Error
Budget. The simulations we have performed can give us initial results
for this problem as well. For example, for the same average error
of 36:8 the BGPS solution has an energy consumption of 77:14fJ
whereas the UVOS solution consumes 132:9 fJ (savings of 1:72X)
and an n-BIVOS solution consumes 139:92 fJ (savings of 1:81X).
Energy Savings in Table III is the ratio of energy consumption of
a correct RCA (no errors, 1.2V supply voltage) and the energy
consumption of the overclocked adder giving us the amount of energy



TABLE III
SUMMARY OF RESULTS OF 16-BIT AND 32-BIT APPROXIMATE RIPPLE CARRY ADDERS

n-bit D (ns) Average Error Magnitude Energy Con-
sumption(fJ)

Energy
Savings

UVOS n-BIVOS BGPS UVOS
/BGPS

n-BIVOS
/BGPS

16-bit 0.4 36.83 50.06 21.66 1.70 2.31 110.78 1.41
16-bit 0.4 36.83 45.97 17.96 2.05 2.56 128.14 1.22
16-bit 0.4 36.83 38.55 26.31 1.40 1.47 132.9 1.18
16-bit 0.4 40.92 36.83 23.25 1.76 1.58 139.92 1.12
32-bit 0.6 18171 33704 13978 1.30 2.41 132.74 2.07
32-bit 0.6 15634 24637 11412 1.37 2.16 139.41 1.97
32-bit 0.6 14892 15215 11142 1.34 1.37 152.54 1.8
32-bit 0.6 14199 10931 8931 1.59 1.22 159.3 1.73

(a) (b) (d)(c)

Fig. 3. Images generated by (a) Correct adders (b) BGPS adders (c) n-BIVOS

and (d) UVOS

saved due to overclocking. The non-monotonic relationship between
energy consumption and average error (as observed from Table III)
is discussed in detail in [15].

A. FFT Results

Approximate circuits can be used in applications which do not
demand 100% accuracy such as digital image processing. To demon-
strate the efficiency of BGPS adders over UVOS and n-BIVOS adders,
we construct three different 8-point approximate FFTs with these
three types of approximate adders but with 40% less energy con-
sumption than the correct adders. We used an image as input to the
approximate FFT so that the quality tradeoff is perceptible.

We use a 16-bit approximate RCA but using the image data as
input to the adder. Then we collect average error for the three types
of approximate adders through simulations in HSPICE using the same
framework as described in Section VI except for the input data. We
use a Gaussian noise source at the output of every adder in MATLAB
to simulate the effect of overclocking with the mean and variance
collected from HSPICE simulations of the RCA. This will result in
an approximately computed FFT of the input image. We then perform
a correct inverse-FFT in MATLAB of this approximate FFT of the
input image. Our goal is to see the extent to which the data has been
preserved in this experiment. We would expect, if both the FFT and
the inverse-FFT were correct, that the final image would be an exact
copy of the original image.

The resultant images from the four cases (three approximate RCA
and one correct RCA) that are discussed above are shown in Fig. 3.
The image generated by the FFT using UVOS adders has a PSNR
that is 15db lower than the image generated by the FFT using
BGPS adders with the same energy consumption. Also, the PSNR
of the image generated by the n-BIVOS adders is 8.5 dB lower than
the image generated by the BGPS adders with the same energy
consumption.
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