
Energy Minimization of a Pipelined Processor
using a Low Voltage Pipelined Cache

Jun Cheol Park, Vincent J. Mooney III, Krishna Palem and Kyu-won Choi
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332�
jcpark, mooney, palem, kwchoi � @ece.gatech.edu

Abstract
A cache is a power-hungry component in a processor.

Therefore, a reduction in cache energy can have a signif-
icant impact on overall processor energy consumption. In
this paper, we propose a new energy minimization technique
for a pipelined processor using a low voltage pipelined
cache. We consider a case where a pipelined cache is not
required but is used nonetheless, enabling the cache sup-
ply voltage to be lowered. Using this method, we show five
benchmarks where, on average, power consumption is re-
duced by 24.85% at a cost of an average increase in execu-
tion time of 15.35% resulting in an average overall energy
reduction of 13.33%.

1 Introduction
Power and energy reduction is not an optional condition

in the embedded systems area. Especially for mobile de-
vices, power and energy usage can be the most important
issue due to battery limitations. Even general purpose high-
performance processors require more attention to reducing
power consumption.

Many ideas have been proposed to reduce power and/or
energy without loss of performance. In this paper, how-
ever, we trade off performance (execution time) for power
by introducing a technique that can reduce power and/or en-
ergy by integrating two different techniques used previously
for different purposes. The first technique is a dual voltage
system. A dual voltage system supplies two different volt-
ages to different circuits in a chip. The lower voltage is
used for non-critical path circuits to reduce power. How-
ever, the lower voltage typically cannot be used for circuits
on the critical path, even though the critical path circuitry is
a power-hungry component. One way to tackle this prob-
lem (the problem of not being able to use a lower voltage
for a component on the critical path) is by pipelining the
component. Then the critical path circuitry is split among
multiple stages to that a lower supply voltage can be used.

We targeted L1 caches as power-hungry components on
the critical path in a pipeline stage. We divided both in-
struction and data L1 caches into two stages and pipelined

them with the corresponding processor stages and applied a
lower supply voltage to the caches

The rest of the paper is organized as follows: Section 2
discusses the motivation for this work and overview of pre-
vious work. Section 3 describes the proposed pipelined
cache architecture. Section 4 discusses the methodology.
Section 5 presents the results and Section 6 concludes the
paper.

2 Motivation and Previous Work
A cache is a local temporary storage of memory used to

reduce time spent accessing memory. Every modern mi-
croprocessor has one or more levels of on-chip cache(s)
to maximize performance. However, a cache is a power-
hungry component. For example, Brooks et al. claim that
instruction and data caches consume 22.2% and 11.1%, re-
spectively, of total power in the Intel Pentium Pro [1]. Also,
Montanaro et al. report an instruction cache and a data
cache of a StrongARM 110 processor that consume 43%
of the total chip power [2]. Therefore, caches are an im-
portant target for power reduction, and various approaches
have been proposed. One good approach to reduce power
is voltage scaling. Voltage scaling applies a different volt-
age (and frequency) to reduce power at a cost of slower cir-
cuitry. However, due to the increase of execution time, the
total energy �������
	����	���	�������������������	�� may not change.
The Intel XScale processor supports a range of frequencies
and voltages in order to allow the user to save power [3].
Instead of scaling the voltage supply of the entire proces-
sor, Moshnyaga and Suji applied dual voltage supplies for
a block-buffered cache [4]. The proposed cache uses a high
voltage in case of a block miss that takes longer time, but
uses a lower voltage for a block hit thus saving power. The
main idea of this approach is to use a high voltage supply
for the critical path and a low voltage supply for the non-
critical path of the cache. The advantage of this technique
is that the clock frequency need not be changed, so there
is no performance loss. In other previous work, Igarashi
proposed a method to find the critical path in a circuit and
apply a lower supply voltage to non-critical paths. Instead
of partitioning a circuit into two sub-circuit groups to sup-

ply different voltages, Igarashi introduced secondary lower
voltage Vdd wires into the circuit. This can avoid long in-
terconnections between the original voltage circuit and the
lower voltage circuit, a problem of the conventional layout
method, but results in significant area overhead [5].

Pipelined caches were originally proposed to improve
performance. Chappel broke down a cache into two or more
segments and placed latches between each stage to pipeline
the cache [6]. Pipelining yields a reduction in average ex-
ecution time per instruction [7]. Some processors, such as
Intel XScale, implement a pipelined cache for performance
enhancement [3].

In this paper, we propose a new way to reduce a cache
energy by pipelining the cache and applying different volt-
ages for the processor core versus the cache.

3 Approach
The cycle time of a processor is decided by the max-

imum delay critical path among the pipeline stages. We
consider the case where a processor has been designed with
a small number of pipeline stages (say, five) at a low clock
frequency (say, 100 MHz) for low power. Given such a de-
sign, we consider the following options: (i) non-pipelined
(single cycle access) caches of the same voltage as the pro-
cessor and (ii) caches pipelined into two stages and supplied
with a lower ����� .

In the described scenarios, the cycle time is already fixed
(e.g. at 10 ns) by the processor pipeline. This, for case (ii)
pipelined caches, each cache pipeline stage delay is already
set by the worst case processor pipeline stage delay. Thus,
power for case (ii) is minimized by lowering the cache sup-
ply voltage until the worst case cache delay of any pipeline
stage equals the worst case processor pipeline stage delay.
For a processor designed to run at 100 MHz, this worst-case
delay is 10 ns. Obviously, reducing the cache supply volt-
age reduces the energy consumed by the cache.

But pipelining a cache does not come only with advan-
tages. There are two disadvantages to consider in terms
of data path pipeline performance. One is branch penalty,
and the other is load use penalty. The branch penalty must
be considered with a pipelined instruction cache. All mod-
ern processors use some kind of branch prediction scheme
to hide branch penalty. If the branch target is mispre-
dicted, some instructions are needlessly fetched and thus
must be wiped out. The number of penalty cycles dif-
fers according to the pipeline architecture. In the case of
a pipelined instruction cache, one or more cycles of penalty
are added to the branch prediction penalty of an equivalent
non-pipelined cache.

When pipelining the data cache is applied, the load use
delay can be a problem. The load use delay occurs when a
load instruction is immediately followed by a dependent in-
struction. A pipelined data cache requires one or more stall
cycles according to the depth of the data cache pipeline.

Various hardware and software techniques can be used to
hide these penalties. Olukotun, Mudge and Brown explored
various depths of a pipelined cache from a performance per-
spective [8].

4 Methodology
4.1 Processor Model

For our processor model we use MARS – obtained
from the University of Michigan – a cycle-accurate Ver-
ilog Model of a five-stage RISC processor capable of run-
ning ARM instructions [9]. The five stages are instruction
fetch (IF), instruction decode (ID), execution (EX), mem-
ory access (ME) and write back (WB). MARS has a non-
pipelined instruction cache and a non-pipelined data cache.
MARS uses backward-taken forward not-taken (BTFN)
branch prediction scheme to hide branch penalties. We use
MARS as is for our case (i) described in Section 3: proces-
sor with non-pipelined data and instruction caches.

We will describe this in more detail later in this section,
but, in summary, we simulate MARS in the Synopsys VCS
simulator and the Synopsys Power Compiler [10] in order
to obtain both processor execution time measurements and
processor core power measurements.

IF1 IF2 ID EX ME1 ME2 WB

I.$1 I.$ 2 D.$1 D.$ 2

IF ID EX ME WB

I.$ D.$

(i) Non-pipelined caches with the same
voltages as the processor

(ii) Caches pipelined with lower supply voltage

Vdd

Vdd

Lower
Vdd

Figure 1: Proposed approach

We modified MARS to obtain case (ii) from Section 3:
processor with two-stage pipelined data and instruction
caches supplied with a lower voltage than the processor
core. To alter MARS to use pipelined caches, one stage
should be inserted between IF and ID for the pipelined in-
struction cache, and one another stage should be inserted
between ME and WB for the pipelined data cache. We
found that the BTFN branch prediction scheme is not ad-
equate for the pipelined instruction cache because this pre-
diction scheme predicts the next instruction in the ID stage.
Instructions are decoded in the ID stage. Therefore, a pro-
cessor recognizes a branch instruction at the end of the ID
stage. As a result, the BTFN can hide some of the branch
penalty, but BTFN still has a non-zero branch penalty even
when the prediction is correct. Furthermore, if the instruc-

tion cache is pipelined resulting in two IF stages prior to the
ID stage, then the branch penalty for a correct prediction
increases by one cycle. A Branch Target Buffer (BTB), on
the other hand, predicts the next instruction during the IF
stage. Therefore, we can potentially have a branch penalty
of zero, if the BTB predicts correctly [7].

We modified MARS so that MARS can simulate a
pipelined cache. Figure 1 shows the result of modifying
MARS to handle pipelined caches: we transformed the
original 5-stage design (case(i)) into a 7-stage processor
pipeline (case(ii)). For the pipelined instruction cache, we
added an IF2 stage using a latch between the IF1 stage and
ID stage. The IF1 stage was the IF stage in case (i). Next,
we modified the branch control logic so that it calculates
the target program counter (PC) value adjusted by the newly
added IF2 stage. Second, we added an ME1 stage also us-
ing a latch between the EX stage and the ME2 stage for
pipelined data cache simulation. The ME2 stage was the
ME stage in case (i). Furthermore, we added one more data
forwarding path from the ME1 stage to EX stage on top of
the existing data forwarding paths of EX stage to EX stage
and ME2 to EX stage. We also changed the branch pre-
diction scheme. To predict the next instruction in the IF
stage, we added a 128-entry branch target buffer (BTB) that
has branch instruction address and branch target address.
The BTB also has a 2-bit counter for branch prediction [11].
Once the BTB mispredicts, it updates BTB table while the
pipeline wipes out the instructions inside.

Our simulation procedures are as follows. We use the
GNU-gcc ARM cross compiler version egcs-2.91.66. For
each benchmark we consider, we compile the benchmark
to relocatable ARM assembly code using GNU-gcc ARM
cross compiler. Then we use the GNU cross-assembler to
generate a binary executable targeted towards ARM archi-
tectures. Next we translate the binary into an ASCII format
called VHX (Verilog Hex) that is suitable for being simu-
lated on MARS using Synopsys VCS [10]. We simulated
the base architecture and the pipelined cache architecture
with each of the five benchmarks. For each benchmark
(with specific input data) and architecture, switching activ-
ity for the processor core and cache statistics are collected.
The cache access statistics are fed to the CACTI memory
models.

We use a synthesis based methodology for developing
the power models for the submodules belonging to the data
path (we consider the data path to consist of the fetch unit,
decode unit, register file, arithmetic logic unit, data cache
access unit and write-back unit). The synthesis infrastruc-
ture consists of two software tools from Synopsys, Inc.: the
Design Compiler and Power Compiler [10].

Design Compiler generates the gate level netlist from the
hardware description of the submodules given as Verilog
RTL description. The netlist is generated using the TSMC

0.25 � library from LEDA systems [12]. The technology de-
tails include features like transistor width, transistor length,
each gate capacitance, drain capacitance, rise time and fall
time of each transistor. The synthesis process is guided by
fixing the maximum delay and maximum area. The max-
imum delay was set to 10 ns and the maximum area was
fixed to infinity so as to obtain the fastest implementation.
In our case, the modules synthesized to operate at 100 MHz
(i.e., a 10 ns cycle time).

The Power Compiler from Synopsys is used to estimate
the power of the processor core. Switching activities of five
benchmarks from VCS simulation is fed to the Power Com-
piler as an input file. Then, the Power Compiler reports
dynamic and static power dissipation of the technology cho-
sen. More details about the infrastructure can be obtained
from a technical report [13].

4.2 Cache Timing and Power Model

16KB, 32KB, 64KB, 128KB, 256KB, 512KBCache size

Block size

Associativity

Number of sets

Number of segments per word line (data)

Number of segments per bit line (data)

Number of segments per word line (tag)

Number of segments per bit line (tag)

Number of rows in a subarray

Number of columns in a subarray

32bytes

directed mapped

512, 1K, 2K, 4K, 8K, 16K

1

1

1

1

512, 1K, 2K, 4K, 8K, 16K

256

ParametersDescription

Figure 2: Cache configuration parameters

We modified CACTI cache model version 2.0 [14] to es-
timate the timing and power consumption of different volt-
age scaled designs of two-stage pipelined caches. The cache
parameters used in the analytical model are defined in Fig-
ure 2.

For the access method of the cache, a conventional par-
allel access read is used. By reading the N data ways in
parallel with the tag array, the set-associative design allows
the data and select signals for the data-selection multiplexor
to arrive at nearly the same time. According to the timing
of the circuit-level critical path of the cache, we split the
circuit into two parts. The first pipeline component consists
of the decoder, tag array and data array, while the second
pipeline component contains the mux, sense-amplifier and
comparator. A variety of timing models have been devel-
oped to estimate the delays of logic gates [15, 16]. These
models are categorized as the simple RC model and its off-
spring, empirical delay models and fall/rise time based an-
alytic models. We modified the RC delay model in [14] to
a fall/rise time based analytic delay model in [15] so that
we can evaluate the impact of the technology scaling fac-
tors such as supply voltage, threshold voltage, and transistor

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
0

5

10

15

20

25

30

35

40

Cache Size (log scale, 16K−512K)

Dealy for Pipeline 1 (Cache Size: 16K−512K, Block Size: 32, Direct Mapped)

Supply Voltage (V)

T
im

e
(n

s)

16K
32K

64K
128K

256K
512K

Figure 3: Delay for a cache pipeline stage 1

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (log scale, 16K−512K)

Dealy for Pipeline 2 (Cache Size: 16K−512K, Block Size: 32, Direct Mapped)

Supply Voltage (V)

T
im

e
(n

s) 16K
32K 64K 128K

256K 512K

Figure 4: Delay for a cache pipeline stage 2

width. CACTI 2.0 has a detailed model of the wire and tran-
sistor structure of on-chip memories and provides very de-
tailed capacitance values for each circuit component which
is verified by Hspice. By using the capacitances, only the
switching power component is estimated for each compo-
nent at the circuit level. Throughout the simulations, the
threshold voltage maintains a quarter of the supply voltage
so that the delay due to the threshold voltage is not suffering
excessively. Figure 3 and Figure 4 show the delay results of
the two pipeline stages with different supply voltages and
cache sizes, respectively. The delay of pipeline stage 1 in-
creases as the cache size increases and the supply voltage
decreases. However, the pipeline delay of stage 2 increases
only if supply voltage decreases, because the critical path
of pipeline stage 2 is not affected by the cache size. Fig-
ure 5 and Figure 6 show the energy dissipation results of
the two pipeline stages with different supply voltages and
cache sizes, respectively. The energy dissipation of pipeline
stage 1 and pipeline stage 2 increases as the cache size in-
creases and decreases as the supply voltage decreases.

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
0

20

40

60

80

100

120

Cache Size (log scale, 16K−512K)

Energy for Pipeline 1 (Cache Size: 16K−512K, Block Size: 32, Direct Mapped)

Supply Voltage (V)

E
ne

rg
y

(n
J)

16K
32K

64K

128K
256K

512K

Figure 5: Energy for a pipeline stage 1

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

3.5
0

10

20

30

40

50

60

70

Cache Size (log scale, 16K − 512K)

Energy for Pipeline 2 (Cache Size: 16K−512K, Block Size: 32, Direct Mapped)

Supply Voltage (V)

E
ne

rg
y

(n
J)

16K
32K

64K

128K
256K

512K

Figure 6: Energy for a cache pipeline stage 2

4.3 Optimization of Energy and Delay
The optimized supply voltage for a cache is decided such

that the worst-case pipelined cache stage delay is less than
or equal to the cycle time (which is determined by the worst
case processor pipeline stage delay). If a cache is evenly
divided into two parts, each pipelined cache stage will po-
tentially have an extra half cycle of time available versus
when the entire cache execution had to occur in one clock
cycle. This extra time available will be used for energy re-
duction.

Example 1. Consider a cache shown in Fig 7. In the base
case, the stage cycle time is 10 ns and Vdd is 2.75 V. The pipelined
cache for high performance has two pipeline stages, and each stage
has a half of a base case cycle time. Therefore, new cycle time is
5 ns, but Vdd is still 2.75 V. It means the total energy consumed is
same with the base case. In pipelined cache for low-power, it uses
10 ns cycle time instead of 5 ns in each pipeline stage. Therefore,
there is 5 ns idling time. If the minimum supply voltage ����� is
1.6 V (increasing the pipeline stage delay to 10 ns), then a 66%
cache energy reduction can be achieved.

The optimal supply voltage can be chosen by the algo-

Table 1: Benchmarks (base case)
Benchmark Description Number of Inst. I. Cache Access D. Cache Access Branch Misprediction Load Use

sort int Sorting Integer 1721 1921 458 177 201
matmul Matrix multiply 6268 7158 2254 604 512

arith Arithmetic 2882 3755 509 105 151
factorial Factorial 12033 16053 4006 4 1002

fib Fibonacci 2852 3664 1064 125 178

3LSHOLQHG�FDFKH�
IRU�KLJK�SHUIRUPDQFH

GHOD\ LGOH

3LSHOLQHG�FDFKH�
IRU�ORZ�SRZHU

GHOD\GHOD\
F\FOH�WLPH� ���QV F\FOH�WLPH� ����QV

9GG ������9

GHOD\
F\FOH�WLPH� ����QV

%DVH�FDVH

9GG �����9
(� �&������ � �����& (� �&����� � �����&

(QHUJ\�VDYLQJV� �������± �����&��������� ����

9GG ������9

Figure 7: Illustration of energy of a pipelined cache

Vdd Range [2.75v − 0.6v]

If MAX [delay_stage1{Vdd(i)}, delay_stage2{Vdd(i)}] < delay_base

 Vdd_optimal = Vdd(i);

endIf

Dcrease Vdd(i);

endFor

Output: Power optimal Vdd

Vdd(0)=MAX(Vdd Range);

For i steps do

Calculate delay_stage1(Vdd(i));

Calculate delay_stage2(Vdd(i));

Input: Vdd Range, delay_base

Voltage Optimization procedure for pipelined cache

Figure 8: Procedure for optimal supply voltage

rithm shown in Figure 8. The procedure chooses the sup-
ply voltage from the ����� range in decreasing manner. The
delay base is the base case delay of a non-pipelined cache
stage. The procedure calculates delay stage1(� � ��� � �) and
delay stage2(� � ��� � �) corresponding to the chosen voltage
� � ��� � � . If the larger delay value of the two stage delay val-
ues is smaller than delay base, replace ����� � ������� ��� with
� � ��� � � . Then the procedure decreases the ������� ��� and per-
forms the steps again. Using this procedure, we find the op-
timal supply voltage that can minimize stage power within
the stage delay criteria.

5 Results
The base case processor uses 2.75 V supply voltage for

processor core and caches. We divided a cache into two
parts. Table 2 shows ����� , delay and energy of the base case
and pipelined cache with different cache sizes. The � � � of

the pipelined cache is energy optimized supply voltage that
can be achieved when the maximum of delay1 and delay2
is extended to delay of base case. The energy column is the
energy consumed when the cache is accessed once. The de-
lay1 of the pipelined cache increases when the cache size
increases, but delay2 does not increase. The reason is that
the cache stage 1 consists of a tag array and a data array, two
main cache size dependent components. This heavy biased
delay values are the reason why � � � increases according to
the cache size. A 16KB cache can save 69.60% of cache en-
ergy. But caches larger than 64KB can save smaller amount
of energy than 16KB and 32KB caches, because the differ-
ence of ����� of base case and � ��� of pipelined cache is not
too much for a large size cache.

Table 1 is a list of benchmarks used and their character-
istics. The number of instruction cache accesses and data
cache accesses are used to estimate cache energy consump-
tion using CACTI. The branch misprediction and load use
count come from base case simulation. Those are important
factors that affect the execution time of a pipelined cache
processor.

The benchmarks are executed in the original and modi-
fied MARS models to obtain the processor core power val-
ues, benchmark execution times and cache access statistics.
Table 3 shows execution time and processor core power
used by the base case (original MARS) processor and the
pipelined cache (modified MARS) processor. The mispre-
diction and load use columns of Table 3 are the dynamic
branch misprediction count and dynamic load use count re-
spectively.

As mentioned above, these two cases carry extra exe-
cution time penalties when pipelined caches are used. In
the sort int and matmul benchmarks, execution times in-
crease by 18.31% and 16.36%, respectively. Both bench-
marks have a dynamic instruction count consisting of ap-
proximately 10% load use cases that cause extra stall cycles.
To avoid these heavy penalties, dynamic or static scheduling
schemes can be used. A dynamic scheme requires out-of-
order instruction execution. Static scheduling is performed
by a compiler that optimizes instructions to avoid load use
cases. In our experiment, no special scheduling scheme was
used to reduce the load use penalties for the seven-stage pro-
cessor case (with pipelined caches). The misprediction of
branches in sort int also takes a huge portion of the execu-

Table 2: Energy delay for a pipelined cache
Base case Pipelined cache processor

Cache(KB) Vdd(V) Delay(nS) Energy(nJ) Delay1(nS) Delay2(nS) Vdd(V) Energy(nJ) % Reduction
16 2.75 0.648 5.689 0.438 0.210 1.6 1.729 69.60
32 2.75 1.021 9.019 0.814 0.206 2.0 4.534 49.37
64 2.75 1.741 15.357 1.540 0.201 2.3 10.450 31.95

128 2.75 3.190 27.942 2.991 0.199 2.5 22.767 18.52
256 2.75 6.254 54.605 6.060 0.195 2.65 50.442 7.62
512 2.75 12.224 105.477 12.030 0.194 2.7 101.422 3.84

Table 3: Execution Time of base case and pipelined cache (Instruction Cache = 16KB, Data Cache = 16KB)
Base case Pipelined cache processor

Benchmark Misprediction Load use E.T(ns) Core Power(mW) E.T(ns) Core Power(mW) E.T.% Increment
sort int 177 201 26595 1002 31465 1008 18.31
matmul 604 512 90485 1114 105293 1121 16.36

arith 105 151 43765 1079 47987 1086 9.65
factorial 4 1002 192345 981 221196 987 15.00

fib 125 178 40635 1057 47719 1063 17.43
average 15.35

tion time. There are at least two different approaches to hide
branch penalty. We used a hardware based approach us-
ing a BTB. Another approach is a software based approach,
such as backward taken and forward not taken scheme [8].
As shown in Table 3, the processor core power does not
change much for the 5 stage versus the 7 stage processor.
This means that the data path is nearly the same and is al-
most always busy. Therefore, the variation in total proces-
sor power between the two cases is heavily dependent on
the cache power.

Both the 5-stage (original MARS) and 7-stage (modified
MARS) processors each have a 16KB instruction cache and
a 16KB data cache. The 5-stage base case uses a 2.75 V
supply voltage (which is the default voltage assumed by the
standard cell library we used) for the processor core and
caches. The pipelined cache processor uses 2.75 V for the
processor core and 1.6 V for the two pipelined caches. The
� � � chosen for the pipelined caches comes from Table 2.
Table 4 and Table 5 show total power and energy distribu-
tions of each component with the various cache sizes. In the
results, we do not consider the overhead for the dual sup-
ply voltage generator. This is because we assume that our
target board already has both voltages available (for a prac-
tical example, the “Skiff” Personal Server Board already
has multiple supply voltages[17]). The 16KB cache con-
sumes 69.60% less energy when a reduced supply voltage
of 1.6 V is used as compared to 2.75 V (note that this lower
voltage is also applied to the I/O pads). The end result is
that our pipelined cache processor consumes approximately
25% less processor power than the 5-stage base case. How-
ever, in the case of sort int, only 9.70% less total processor
(core + L1 caches) energy is used because processor core

energy consumed increases for the 7-stage processor due to
increased execution time.

From the experimental results, the branch misprediction
penalty and load use penalty heavily affect both execution
time and energy consumption. Therefore, to maximize the
energy savings using a pipelined cache, a precise branch
prediction scheme and an instruction scheduler that can re-
duce load use penalties must be introduced.

6 Conclusion and Future Work
With pipelined L1 caches supplied by a lower voltage,

we showed three benchmarks where energy consumed is re-
duced by 10-15%. With additional micro-architectural and
compiler support, we believe that we can improve the re-
sults to around 20-25% on each benchmark. Furthermore,
we believe that the approach presented in this paper can be
used in any case where cache-like memory is used and low
power is an important issue.

To date we have only considered pipelined caches with
two stages. In the future, we will investigate the effects of
adding even more stages to the caches with various cache
sizes. To more fully take advantage of the low power po-
tential of pipelined caches, we need to apply advanced ar-
chitectural techniques that have improved branch prediction
and an instruction scheduler (compiler) that can better hide
load use delay.

Acknowledgments
This research was funded by DARPA under contract

number F30602-00-2-0564. We also acknowledge do-
nations received from Cadence, Hewlett-Packard, Intel,
LEDA Systems, Mentor Graphics, Sun and Synopsys.

Table 4: Power distribution of base case and pipelined cache (Instruction Cache = 16KB, Data Cache = 16KB)
Base case (mW) Pipelined cache processor (mW)

Benchmark Core I. Cache D. Cache Total Core I. Cache D. Cache Total % Reduction
sort int 1002 411 98 1511 1008 120 25 1154 23.67
matmul 1114 450 142 1706 1121 134 37 1292 24.27

arith 1079 488 66 1634 1086 154 18 1258 22.96
factorial 981 475 118 1574 987 143 31 1161 26.24

fib 1057 513 149 1719 1063 151 39 1253 27.09
average 24.85

Table 5: Energy distribution of base case and pipelined cache (Instruction Cache = 16KB, Data Cache = 16KB)
Base case (nJ) Pipelined cache processor (nJ)

Benchmark Core I. Cache D. Cache Total Core I. Cache D. Cache Total % Reduction
sort int 26660 10929 2606 40195 31715 3789 794 36298 9.70
matmul 100830 40723 12823 154377 118034 14118 3898 136050 11.87

arith 47238 21363 2896 71496 52105 7406 880 60392 15.53
factorial 188628 91328 22791 302747 218220 31662 6928 256810 15.17

fib 42953 20845 6053 69851 50743 7227 1840 59810 14.38
average 13.33

References
[1] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A frame-

work for architectural level power analysis and optimiza-
tions,” in 27th annual International synposium on Computer
Architecture, 2000.

[2] J. Montanaro and et. al., “A 160-mhz, 32-b, 0.5-w cmos risc
microprocessor,” IEEE Journal of Solid-State Circuits, vol.
31, no. 11, pp. 1703–1714, 1996.

[3] L. T. Clarl and et. al., “An embedded 32-b microprocessor
core for low-power and high-performance applications,” IEEE
Journal of Solid-State Circuits, vol. 36, no. 11, pp. 1599–
1608, November 2001.

[4] V.G. Moshnyaga and hiroshi Tsuji, “Cache energy resuction
by dual voltage supply,” in Proc. Int. Symp. Circuit and Sys-
tem, 2001, pp. 922–925.

[5] M Igarashi and et al., “A low-power design methid using
multiple suply voltages,” in International Symposium on Low
Power Electronics and Design, 1997.

[6] T.I Chappell, B.A. Chappell, S.E. Schuster, J.W. Allan, S.P.
Klepner, R.V. Joshi, and R.L. Franch, “A 2-ns cycle, 3.8-ns
access 512-kb cmos ecl sram with a fully pipelined architec-
ture,” IEEE Journal of Solid-State Circuits, vol. 26, no. 11,
pp. 1577–1585, 1991.

[7] J.L Hennessy and D.A. Patterson, “Computer Architecture: A
Quantitative Approach Second Edition”, Morgan Kaufmann,
San Francisco, California, 1996.

[8] K. Olukotun, T. N Mudge, and R. B. Brown, “Multilevel op-
timization of pipelined caches,” IEEE Transactions on com-
puter, vol. 46, no. 10, pp. 1093–1997, October 1997.

[9] The SimpleScalar-Arm power modeling project,
http://www.eecs.umich.edu/˜jringenb/power.

[10] Synopsys Inc., http://www.synopsys.com.

[11] J. E Smith, “A study of branch prediction strategies,” in Proc.
8th Annual International Symposium Computer Architecture,
1981.

[12] LEDA Systems, Insc., http://www.ledasys.com.

[13] P. Korkmaz, K. Puttaswamy, and V. Mooney, “Energy mod-
eling of a processor core using synopsys and of the memory
hierarchy using the kamble and ghose model,” in Technical
Report CREST-TR-02-002. Georgia Institute of Technology,
February 2002.

[14] G. Reinman and N. Jouppi, Cacti ver-
sion 2.0, http://www.research.digital.com/wrl/people/jouppi/
CACTI.html.

[15] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI
Design, Addison Wesley, Santa Clara, California, 1992.

[16] J. Rubenstein, P. Penfield, and M.A. Horowitz, “Signal delay
in rc networks,” IEEE Transactions on CAD, vol. 2, no. 1, pp.
202–211, 1983.

[17] HP Cambridge Research Laboratory Personal Server Project,
http://crl.research.compaq.com/projects/personalserver/
personal-server- spec.html.

