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Abstract
This paper proposes a novel O(n) Parallel Banker’s Algo-

rithm (PBA) with a best-case run-time of O(1), reduced from
an �������
	�� run-time complexity of the original Banker’s Al-
gorithm. We implemented the approach in hardware, which we
call PBA Unit (PBAU), using Verilog HDL and verified the run-
time complexity. PBAU is an Intellectual Property (IP) block
that provides a mechanism of very fast, automatic deadlock
avoidance for a MultiProcessor System-on-a-Chip (MPSoC,
which we predict will be the mainstream of future high per-
formance computing environments). Moreover, our PBA sup-
ports multiple-instance multiple resource systems. We demon-
strate that PBAU not only avoids deadlock in a few clock cy-
cles (1600X faster than the Banker’s Algorithm in software)
but also achieves in a particular example a 19% speedup of
application execution time over avoiding deadlock in software.
Lastly, the MPSoC area overhead due to PBAU is small, under
0.05% in our candidate MPSoC example.

1 Introduction

Recent trends show that System-on-a-Chip (SoC) technol-
ogy enables multicore multithreaded systems on a single chip.
An example of this is the Xilinx Vertex II Pro [1], which may
contain multiple PowerPC processors and additional Intellec-
tual Property (IP) cores. Furthermore, due to the ever increas-
ing expansion of the Internet, a tremendous amount of multi-
media related data is being created, edited and exchanged; this
multimedia data is becoming larger with more varied and com-
plicated encodings, requiring unprecedented processing power.
To support such multimedia communication, numerous algo-
rithms, specialized processors, image/video coding hardware
modules and error isolation modules have been implemented
and exploited [2].

Thus, we predict that in the near future, MultiProcessor SoC
(MPSoC) designs will, as shown in Figure 1, have many Pro-
cessing Elements (PEs) and hardware resources. In such fu-
ture real-time MPSoCs, many processes will concurrently run
and dynamically require and access such available on-chip re-
sources. Not only that, but ensuring predictability and relia-
bility in such MPSoCs will be much more difficult. In such
systems, we predict that deadlock possibilities will no longer

be ignorable issues, but will, if not properly addressed, become
problems in the sharing of resources.
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Figure 1 A practical MPSoC

Therefore, we propose a novel Parallel Banker’s Algorithm
and its hardware implementation and demonstrate its perfor-
mance evaluation so that MPSoC programmers, who are re-
luctant to exploit deadlock avoidance approaches even as such
approaches increase in importance, may be willing to adopt a
faster hardware version of a deadlock avoidance approach.

2 Definitions and a Theorem
Definition 1 A safe sequence is an enumeration ����� 	 ������������
of all the processes in the system, such that for each ���� ��������������� , the resources that  � may request are a subset of
the union of resources that are currently available and re-
sources currently held by 
���� 	 ���������� ��!
� [3, 4].

Theorem 1 A system of processes and resources is in a
safe state if and only if there exists a safe sequence" #���$ 	 �������%�� � & . If there is no safe sequence, the system is
in an unsafe state [4].

If a system is in a safe state, completion of all the processes
can be guaranteed by restricting resource usage in the system
with a strategy – such as the Banker’s Algorithm [3, 4] – which
executes one of the safe sequences. An “unsafe” state is not
necessarily a deadlocked state because there still may exist a
possibility that all processes terminate successfully.

Definition 2 A single-instance resource is a resource that ser-
vices no more than one process at a time. That is, while the



resource is processing a request from a process, all other pro-
cesses requesting to use the resource must wait [5].

Definition 3 A multiple-instance resource is a resource that
can service two or more processes at the same time, providing
the same or similar functionality to all serviced processes [5].

Example 1 An example of a multiple-instance resource
The SoC Dynamic Memory Management Unit (SoCDMMU) dynam-
ically allocates and deallocates segment(s) of global level two (L2)
memory between PEs with very fast and deterministic time (i.e., four
clock cycles) [6]. In a system having an SoCDMMU and 16 segments
of global L2 memory, which can be considered as a 16 instance re-
source, rather than having each PE (or process) keep track of each
segment, PEs request segment(s) from the SoCDMMU (which keeps
track of the L2 memory). In this way, not only can the overhead of track-
ing segments for each PE be reduced but also interfaces between PEs
and segments can be simplified because PEs request segment(s) from
one place (i.e., the SoCDMMU).

3 Previous Work and Motivation
In this section, we first mention related previous work and

then introduce our approach.
The fundamental deadlock avoidance approach is the well-

known Banker’s Algorithm (BA) in the operating system
realm. Dijkstra first introduced BA for single multiple-instance
resource systems [3], and later Habermann improved it for
multiple-instance multiple-resource systems [4]. In BA, each
process declares the maximum possible number of instances
for each resource it may need. Given this information, as each
resource request is made, an assignment is authorized pro-
vided that there exists at least one sequence of executions that
does not evolve to a deadlock. The run-time complexity of the
Habermann’s BA in software is ������� � 	 � , where � and �
are the numbers of resources and processes, respectively. The
efficiency of the algorithm was later improved to ������� ���
by Holt [7]. Even though BA was proposed a few decades
ago, minor variations to BA are still being proposed for critical
systems that can greatly benefit from the algorithm. For in-
stance, in 2002, J. Ezpeleta at al. proposed a banker’s solution
for deadlock avoidance in flexible manufacturing systems [8].

Recently, [9] has proposed a novel method of deadlock
avoidance and its hardware implementation, which has a run-
time complexity of ������� ��� � ��� ����� � , where � and � are
the numbers of resources and processes, respectively (see [9]
for details). However, because the implementation of [9] is
based on resource allocation graph [5] approach for single-
instance resources, it can only be used for systems exclusively
with single-instance resources. Our implementation, the Par-
allel Banker’s Algorithm Unit (PBAU), on the contrary, can be
used for not only a system with single-instance resources but
also a system with multiple-instance resources as well.

4 Target System Model
To describe our system model, we show in the following

example a possible MPSoC target.

Example 2 A future MPSoC
We refer to the device shown in Figure 1 as a particular MPSoC exam-
ple. This MPSoC consists of five Processing Elements (PEs) and three

resources – a counting semaphore with a group of I/O buffers, another
counting semaphore with a group of multiple DSP processors and an
SoCDMMU memory allocator [6] with a large L2 memory. Counting
semaphores [3] are used to manage limited resources (including man-
aging access to the resources). The MPSoC also contains a memory
arbiter and a PBAU. PBAU in Figure 1 receives all requests and re-
leases, decides whether or not the request can cause a deadlock and
then permits the request only if no deadlock results.

We consider this kind of request-grant system with many
resources and PEs shown in Figure 1 as our system model.

5 Methodology
Algorithm 1 shows our novel Parallel Banker’s Algorithm

(PBA) for multiple-instance multiple-resource systems. PBA
executes whenever a process is requesting resources and re-
turns the status of whether the request is successfully granted
or rejected due to the possibility of deadlock. PBA decides if
the system is still going to be sufficiently safe after the grant.
Before explaining the details of PBA, let us first show data
structures as shown in Table 1 and notations for PBA as shown
in Table 2.

name notation explanation

Request[i][j] ��� � request from process � for resource 	
Maximum[i][j] 
�� � maximum demand of process � for resource 	

Available[j] �� current number of unused resource 	
Allocation[i][j] ��� � process � ’s current allocation of 	

Need[i][j] ��� � process � ’s potential for more 	
(Need[i][j]=Maximum[i][j]-Allocation[i][j])

Work[j] ��� a temporary storage (array) for Available[j]
Finish[i] � � potential completeness of process �

Wait count[i] ��� wait count for process � to break livelock

TABLE 1 DATA STRUCTURES FOR PBA

notation explanation
��� a process��� a resource

array[][] or array[] all elements of the array
array[i][] all elements of row � of the array
array[][j] all elements of column � of the array

TABLE 2 NOTATIONS FOR PBA

Algorithm 1 Parallel Banker’s Algorithm (PBA)

PBA (Request[i][] for resources from process � )  
1 STEP 0: !#" makes Request[i][] for resources
2 STEP 1: if $&% , Request[i][j] ' Need[i][j] /* $ means for all. */
3 goto STEP 2
4 else ERROR
5 STEP 2: if $&% , Request[i][j] ' Available[j]
6 goto STEP 3
7 else deny ! " ’s request, increase Wait count[i] and return
8 STEP 3: pretend to allocate requested resources
9 $&% , Available[j] := Available[j] – Request[i][j]
10 $&% , Allocation[i][j] := Allocation[i][j] + Request[i][j]
11 $&% , Need[i][j] := Maximum[i][j] – Allocation[i][j]
12 STEP 4: prepare for safety check
13 $&% , Work[j] := Available[j]
14 $(� , Finish[i] := false

Let able-to-finish be ((Finish[i] == false) and ( $#% , Need[i][j] ' Work[j]))
15 STEP 5: Find all � such that able-to-finish
16 if such � exists,
17 $#% , Work[j] := Work[j] + ) ) ) " such that able-to-finish Allocation[i][j]
18 for � such that able-to-finish, Finish[i] := true
19 repeat STEP 5
20 else (i.e., no such � exists) goto STEP 6 (end of iteration)
21 STEP 6:
22 if Finish[i] == true for all �
23 then pretended allocations anchor; ! " proceeds (i.e., SAFE)
24 else
25 restore the original state and deny !&" ’s request (i.e., UNSAFE)*



PBA takes as input the maximum requirements of each pro-
cess and guarantees that the system always remains in a safe
state. Tables (data structures or arrays) are maintained of avail-
able resources, maximum requirements, current allocations of
resources and resources needed, as shown in Table 1. PBA
uses these tables to determine whether the state of the system
is either safe or unsafe. When resources are requested by a
process, the tables are updated pretending the resources were
allocated. If the tables will be in a safe state, then the request
is actually granted; otherwise, the request is not granted, and
the tables are returned to their previous states.

Let us explain Algorithm 1 step by step. A process can re-
quest multiple resources at a time as well as multiple instances
of each resource. In Step 1, when a process requests resources,
PBA first checks if the request does not exceed Need[i][] for
the process. If the request is within its pre-declared claims, in
Step 2 PBA checks if there are sufficient available resources
for this request. If sufficient resources exist, PBA continues to
Step 3; otherwise, the request is denied and the value of the
wait counter (in variable Wait count[i] of Table 1) for the pro-
cess increases to break livelock if necessary. In Step 3, it is
pretended that the request could be fulfilled, and the tables are
temporarily modified according to the request.

In Step 4, PBA prepares for the safety check, i.e., initializes
variables Work[] and Finish[]. In Step 5, PBA finds processes
that can finish their jobs by acquiring some or all of available
resources in Work[]. If one or more such processes exist, PBA
adds all resources that these processes hold to Work[], then
declares these processes to be able-to-finish (i.e., Finish[i] :=
true), and finally repeats Step 5 until all processes can finish
their jobs. On the other hand, if no such process exists – mean-
ing either all processes became able-to-finish or no more pro-
cesses can satisfy the comparison (i.e., Need[i][j] � Work[j]
for all � ) – PBA moves to Step 6 to decide whether the pre-
tended allocation state is safe or not.

In Step 6, if all processes have been declared to be able-to-
finish, then the granted allocation state is in a safe state (mean-
ing there exists at least a safe sequence by which all processes
can finish their jobs in the order of processes having been de-
clared to be able-to-finish); thus, the requester can safely pro-
ceed. However, in Step 6, if there remain any processes unable
to finish, the pretended allocation state may cause deadlock;
thus, PBA denies the request, restores the original allocation
state before the pretended allocation and also increases the wait
count for the requester.

The gist of our approach is that because the operations in
Step 5 are performed in parallel, if Need[i][j] � Work[j] for all
� and for all � are satisfied at the first iteration, PBA finishes at
once, resulting in O(1) run-time. Such an example is given in
Chapter V of [10] as “An example of resource allocation in a
special case.”

6 Implementation

Now we will describe implementation details including the
architecture and circuitry of PBAU.

6.1 Architecture of PBAU

Figure 2 illustrates PBAU implemented in Verilog HDL.
PBAU is composed of element cells, process cells, resource
cells and a safety cell in addition to a Finite State Machine
(FSM) and a processor interface.
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Figure 2 PBAU architecture

The Processor Interface (PI) consists of command registers
and status registers. PI receives and interprets commands (re-
quests or releases) from processes as well as accomplishes sim-
ple jobs such as setting up the numbers of maximum claims
and available resources as well as adjusting the numbers of al-
located and available resources in the response to a release of
resources. PI also returns processing results back to PEs via
status registers as well as activates the FSM in response to a
request for resources from a process. In the next subsection,
we will describe in detail two of the cells in Figure 2.

6.2 PBAU Circuitry
6.2.1 Element Cell
An Element Cell (EC), shown in Figure 3, performs two com-
parisons: Request[i][j] � Need[i][j] and Need[i][j] � Work[j].
The former comparison result (i.e., Request[i][j] � Need[i][j])
is stored into a one-bit register. EC also stores Allocation[i][j]
and Maximum[i][j]. EC emits Allocation[i][j] to Work[j]
through freed out ij if the EC belongs to an able-to-finish pro-
cess (i.e., Need[i][j] � Work[j] for all � ). In addition, there are
two muxes, two subtracters and two adders. One adder is used
to increase the number of allocation instances of the requested
resource, and one subtracter is used to restore the temporarily
increased number of instances if the safety test fails. Another
subtracter is used to calculate the equation Need[i][j] = Maxi-
mum[i][j] – Allocation[i][j]. The other adder is used to make
allocated instances (to this cell) available to later processes in
a safe sequence.

6.2.2 Resource Cell
Each Resource Cell (RC, shown in Figure 4) corresponds to
a multiple instance resource. RC has an Available[j] register
that stores the number of instances of the resource. RC also
has a Work[j] register that temporarily stores the number of
resources in Available[j] (as shown in Step 4) plus resources
to be released by able-to-finish processes during iterations of
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Step 5. RC also has a comparator that compares Request[i][j]
with Available[j], the result of which is stored into a register.
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The rest of the cells, i.e., Process Cell and Safety Cell, have
been designed in parallel hardware using the same approach
as described for Element Cell. The details of Process Cell and
Safety Cell are described in a thesis [10].

6.2.3 Finite State Machine (FSM)
Figure 5 illustrates the transition diagram of the FSM along
with input and output signals, which mainly controls the be-
havior of all cells. The details of FSM operation at each clock
cycle are contained in [10].
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6.3 Synthesized Result of PBAU
We used Synopsys Design Compiler [11] to synthesize var-

ious types of the PBAU with the QualCore Logic .25 � m stan-

dard cell library [12]. We aimed to synthesize at a clock period
of 4 ns. The synthesis result is shown in Table 3. The “Area”
column denotes the area in units equivalent to a minimum-
sized two-input NAND gate in the library. PBAU5x5 repre-
sents a PBAU for five processes and five resources (each of
which can have up to 16 instances). In case where an SoC con-
tains five PowerPC 755 PEs (1.7M gates each) and a 16MB
memory (33.5M gates), the area overhead in the SoC due to
PBAU 20x20 is less than .05%.

Synthesis Result PBAU5x5 8x8 10x10 15x15 20x20
Area (w.r.t. 2-input NAND) 1303 3243 5030 11158 19753
Number of lines of Verilog 600 700 770 1000 1350

TABLE 3 SYNTHESIZED RESULT OF PBAU

6.4 Run-time Complexity of PBAU
The run-time complexity of a generic implementation of the

traditional BA in software is �������	��
� , where � and � are
the numbers of resources and processes, respectively [5].

By implementing PBA in hardware able to exploit full paral-
lelism, we achieved a run-time of O(1) in the best-case (i.e., the
cases of system states where for all � and for all � , Need[i][j]�

Available[j]), O(n) in the worst-case (i.e., the cases where
there exists only one unique safe sequence of one by one in-
crement order of able-to-finish processes), and approximately
n/2 clock cycles on average. A more formal and detailed theo-
retical analysis is contained in [10].

7 Experiments
7.1 Simulation Environment Setup

The experimental simulations were carried out using Seam-
less Co-Verification Environment (CVE) [13] aided by Synop-
sys VCS [14] for Verilog HDL simulation and XRAY [15] for
software debugging. We have used Atalanta Real-Time Oper-
ating System (RTOS) version 0.3 [16], a shared-memory mul-
tiprocessor RTOS. The RTOS code resides in a shared mem-
ory, and all PEs execute the same RTOS code and share kernel
structures and the states of all processes and resources.

7.2 Experimental System
For the experiment, we simulate an MPSoC with five Mo-

torola MPC755s and resources similar to Figure 1. Each
MPC755 has separate instruction and data L1 caches each of
size 32KB. The MPSoC also has the following three types
of resources: an SoCDMMU [6] with 10 blocks of allocable
memory ( ��� ), a counting semaphore with a group of five DSP
processors ( � 
 ) and another counting semaphore with seven
I/O buffers ( ��� ). These three types of resources have timers,
interrupt generators and input/output ports as needed to op-
erate properly in the MPSoC. In addition, the MPSoC has a
PBAU for five processes and five resources, an arbiter and
16MB of shared memory including the allocable memory. The
master clock rate of the bus system is 10 ns. Code for each
MPC755 runs on an instruction-accurate (not cycle-accurate)
MPC755 simulator provided by Seamless CVE [13]. Every-
thing else other than the MPC755s are described in Verilog



HDL and simulated in Synopsys VCS [14]. We invoke pro-
cesses #���������
�� � on PE1, ����� , PE5, respectively.

7.3 Application Example
We execute a sample robotic application in which recogniz-

ing objects, avoiding obstacles and displaying trajectory re-
quire DSP processing; robot motion and data recording in-
volve accessing IO buffers; and proper real-time operation
(e.g., maintaining balance) of the robot demands fast and de-
terministic allocation and deallocation of memory blocks. This
application invokes a sequence of requests and releases. The
sequence has ten requests, six releases and five claim settings
with one false request (e.g., Request[i][j] � Need[i][j]) and one
request that leads to an unsafe state. Note that every command
is processed by an avoidance algorithm (either PBAU or BA in
software). Recall that there is no constraint on the ordering of
the resource usage.

In an experiment with the application, we measure two fig-
ures, the average execution time of deadlock avoidance algo-
rithms and the total execution time of the application in two
cases: (i) using PBAU versus (ii) using the Banker’s Algorithm
in software. The application example is described in great de-
tail in a thesis [10].

7.4 Experimental Result

Table 4 shows that PBAU achieves about a 1600X speedup
of the average algorithm execution time and gives a 19%
speedup of application execution time over avoiding deadlock
with BA in software (the speedup is calculated according to the
formula by Hennessy and Patterson [17]). Note that during the
run-time of the application, each avoidance method (PBAU or
BA in software) is invoked 22 times in both cases, respectively
(since every request and release invokes each method). Table 5
represents the average algorithm execution time distribution in
terms of different types of commands.

In short summary, while BA in software spends about 5400
clock cycles on average at each invocation in this experiment,
PBAU only spends 3.32 clocks on average.

Method of Algorithm PBAU Application Application
Implementation Exec. Time Speedup Exec. Time Speedup

PBAU (hardware) 3.32 ������	�
 �����
 �����
 ��������������� 185716 ����� �������� 	������  � 	������  !�"��#�$BA in software 5398.4 221259
*The time unit is a clock cycle, and the values are averaged.

TABLE 4 EXECUTION TIME COMPARISON

Method of Set Set Request Release Wrong
Implementation Available Max Claim Command Command Command

# of commands 1 5 9 6 1
PBAU (hardware) 1 1 6.5 1 2

BA in software 416 427 11337 2270 560
*The time unit is a clock cycle, and the values are averaged if there were multiple

commands of the same type. “#” denotes “the number of”.

TABLE 5 EXECUTION TIME COMPARISON

8 Conclusion
A novel Parallel Banker’s Algorithm (PBA) for multiple-

instance multiple-resource systems and its hardware imple-
mentation, which we call PBA Unit (PBAU), are described in

this paper. PBAU gives an O(n) run-time complexity with the
best-case of O(1); the result seems to be an average run-time of
approximately n/2 clock cycles in most cases. PBAU provides
a multiprocessor system with a very fast and low area way of
avoiding deadlock at run-time, which helps free programmers
from worrying about deadlock. Whenever a request occurs in
a system, PBAU checks for the safety of its grant. The request
is granted provided that the system can remain in a safe state.

We demonstrated the following through an experiment.
(i) PBAU automatically avoided deadlocks as well as reduced
the deadlock avoidance time by 99.9% (about 1600X) as com-
pared to the Banker’s Algorithm (BA) in software. (ii) PBAU
achieved in a particular example a 19% speedup of application
execution time in an experiment as compared to the execution
time of the same application that uses BA in software.

Finally, the MPSoC area overhead due to PBAU is small,
under 0.05% in our candidate MPSoC example.
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