

Abstract
In this paper, we propose a framework for user-

directed automatic generation of configuration files for
a custom hardware/software real-time operating system
(RTOS) for System-on-a-Chip. The main goal of this
research is to help the user explore which configuration
is most suitable for his or her specific application or set
of applications. This work leverages three previous
innovations in hardware/software RTOS design: System-
on-a-Chip Lock Cache (SoCLC) [1], System-on-a-Chip
Deadlock Detection Unit (SoCDDU) [2] and System-on-
a-Chip Dynamic Memory Management Unit
(SoCDMMU) [3]. However, in spite of the excellent
performance of these innovations, the user may not need
or have the chip space for all three of them. In this case,
our framework enables automatic generation of different
mixes of hardware and software versions of the SoCLC,
SoCDDU and SoCDMMU. We show how to generate
configuration files for custom RTOSes for two examples
published previously [1, 2]. The average-case
simulation result of a database application model with
client-server pair of tasks on a four-processor system
with SoCLC showed a 27% overall speedup in total
execution time than that of the same system but with
software synchronization. In the other example, the
application execution time to end up in a deadlock state
and then detect the deadlock showed a 38% speedup
with the SoCDDU as compared to the same system but
with a software deadlock detection implementation.

Keywords
Reconfigurable Logic, System-on-a-Chip, RTOS,
Embedded Systems, Hardware/Software Partitioning

1. Introduction

A System-on-a-Chip (SoC) architecture with re-
configurable logic and multiple processing elements
(PEs), as shown in Figure 1, is likely to become quite
common in the near future [4]. Nowadays, programm-
able logic companies are producing reconfigurable logic
chips with millions of reconfigurable logic gate

equivalents plus, in some cases, custom layout(s) of
processor(s), all available in one chip. These chips may
be preferable in embedded systems especially where
rapid upgrades are needed or where companies want to
take advantage of early time-to-market. These chips may
also be useful for system development, where the
execution of certain software does not meet the timing
constraints of some applications, thereby requiring
hardware/ software partitioning tradeoffs. Obviously,
one possible solution is moving the slow software
processing to faster hardware processing in re-
configurable logic. However, changing the target
architecture and associated software can require
significant re-porting/reconfiguration of the real-time
operating system (RTOS), which is where our research
fits in.

Our framework is designed to provide automatic
hardware/software configurability to support user-
directed hardware/software partitioning [5, 6]. To ease
the user effort, we made a graphical user interface (GUI)
tool with which the user can select necessary RTOS
components that are most suitable for his or her
application. Here, components of an RTOS are specific
function modules that are implemented either in
software or in hardware. We focus on real-time systems
for our specific application domain. Therefore, we
assume that the user knows what kind of applications

A Framework for Automatic Generation of Configuration Files
for a Custom Hardware/Software RTOS

Jaehwan Lee, Kyeong Keol Ryu and Vincent John Mooney III

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia, U.S.A.

Figure 1. Target SoC Architecture

H/W
S/W

RTOS

will be run, how many tasks are in the system, how
many methods of inter-process communication (IPC) are
used and what the target system is. We also focus our
research on a shared memory multiprocessor system,
where a shared memory is used for the IPC medium.

The paper is organized as follows: Section 2
discusses the background and motivation of our research.
Section 3 gives an overview, requirements and
underlying environment of our methodology, describing
our target system architecture and RTOS. Section 4
describes our framework in detail and explains how the
configuration files can be generated and how these files
work together to construct a custom hardware/software
RTOS. Section 5 shows the experimental results with
two application examples. Finally, conclusion and future
work are addressed in Section 6.

2. Background and Motivation

In general, commercial RTOSes available for
popular embedded processors provide significant
reduction in design time. However, they have to be
general and might not be efficient enough for specific
applications. To overcome this disadvantage, some
previous work has been done in the area of automatic
RTOS generation [7, 8]. Using these proposed
methodologies, the user can take advantage of many
benefits such as a smaller RTOS for embedded systems,
rapid generation of the RTOS, easy configuration of the
RTOS and a more efficient and faster RTOS due to
smaller size than commercial RTOSes. Also, some
previous work about automated design of SoC
architectures has been done [9, 10]. However, the
previous work mainly focuses on one side or the other of
automatic generation: either software or hardware. In the
methodology proposed in this paper, we focus on the
configuration of an RTOS which may include parts of
the RTOS in hardware.

3. Methodology

In this section, we propose a novel approach for
automating the partitioning of a hardware/software
RTOS between a few pre-designed partitions. The flow
of automatic generation of configuration files is shown
in Figure 2. Specifically, our framework, given the
intellectual property (IP) library of processors and RTOS
components, translates the user choices into a
hardware/software RTOS for SoC. The GUI tool
generates configuration files: header files for C pre-
processing, a Makefile and some domain specific code
files such as Verilog files to glue the system together. To
test our tool, we execute our different RTOS
configurations in the Mentor Graphics Seamless Co-
Verification Environment (CVE) [11]. Within the
Seamless framework, Processor Support Packages
(PSPs) and Instruction Set Simulators (ISSes) for

processors, e.g., ARM920T and PowerPC MPC750, are
provided.

For RTOS hardware IP, we start with an IP library of
hardware components consisting of System-on-a-Chip
Lock Cache (SoCLC) and System-on-a-Chip Deadlock
Detection Unit (SoCDDU) [1, 2]. For the sake of the
reader’s understanding, we briefly describe these IP
components. The SoCLC is a hardware mechanism that
resolves the critical section interactions among PEs [1].
Lock variables are moved into a separate “lock cache”
outside of the cache memory system but in the SoC,
thereby improving the performance criteria in terms of
lock latency, lock delay and bandwidth consumption in a
shared memory multi-processor SoC. Since each lock
variable requires only one bit, the hardware cost is very
low. Table 3 (see the last page of this paper) reports an
example where 128 lock variables (which are enough for
many real-time applications) cost approximately 7000
logic gates of area. The SoCDDU performs a novel
parallel hardware deadlock detection based on
implementing deadlock searches on the resource
allocation graph in hardware [2]. It provides a very fast
and very low area way of checking deadlock at run-time
with dedicated hardware. The SoCDDU reduces
deadlock detection time by 99% as compared to
software.

For RTOS software IP, we start with the Atalanta
RTOS version 0.3 [12], a shared-memory multiprocessor
real-time operating system developed at the Georgia
Institute of Technology. This RTOS is specifically
designed for supporting multi-processors with large
shared memory in which the RTOS is located and is
similar to many other small RTOSes. All PEs (currently
supported are either all MPC750 processors or all
ARM9 processors) execute the same RTOS code and
share kernel structures, data and states of all tasks. Each
PE, however, runs its own task(s) designated by the user.
Almost all software modules are pre-compiled and
stored into the Atalanta library. However, some modules

Hardware
RTOS
library

Makefile

User.h

Verilog

Software
RTOS
library

GUI tool

Base
Architecture

library

Figure 2. Flow of automatic generation of configuration files

User
input

have to be linked to the final executable file from the
object module itself because some function names have
to be the same in order to provide the same application
programming interface (API) to the user. For example, if
the deadlock detection function could be implemented in
the RTOS either in software or in hardware, then the
function name that is called by an application should be
the same even though the application could use,
depending on the particular RTOS instantiated in the
SoC, either the software deadlock detection function or a
device driver for the SoCDDU. By having the same API,
the user application does not need modification
whichever method – either software or hardware – is
actually implemented in the RTOS and the SoC.

To ease the user effort required to manually
configure the hardware/software RTOS, we made a GUI
tool for user inputs. With the GUI tool, the user can
select necessary RTOS components that are most
suitable for his application. Currently, the user may
select the following items in software: IPC methods such
as semaphores, mailboxes and queues; schedulers such
as priority or round-robin scheduler; and/or a deadlock
detection module. The user may also select the following
items in hardware: SoCDDU and/or SoCLC.

We have specified two important requirements for
implementing our tool. The first requirement is that the
RTOS configuration process should be easily scalable
according to the number of PEs and IPC methods. One
example of scalability is that if the user selects the
number of PEs, the tool can adaptively generate an
appropriate configuration that contains the given number
of PE wrappers and the interfaces gluing PEs to the
target system. The second requirement is to ensure a
high degree of separation of the tool from changes or
upgrades of the hardware IP library, which means that
our tool is designed so that tool changes caused by
hardware module changes in the IP library are
minimized.

4. Implementation

In this section, we describe which configuration files
are generated from the tool and how these files are used
to make a custom hardware/software RTOS.

4.1 The GUI tool for configuration

Figure 3 shows our GUI tool, with which the user
can configure an application specific hardware/software
RTOS and an SoC for his application. For pre-
fabrication design space exploration, different PEs and
the number of PEs can be selected. For post-fabrication
customization of a platform SoC with reconfigurable
logic (e.g., a specific fabricated version of Figure 1), the
user can decide whether or not to put parts of the RTOS
into the reconfigurable logic. The user can input
application specific constraints such as the task stack

size and the number of tasks in the system. The source
code of the tool is written in the Tcl/Tk language [13].

4.2 Makefile generation example
The generation of a Makefile is shown in Example 1.

Example 1: Makefile generation. After the input data shown
in Figure 3 is entered by the user in the GUI, the user clicks the
Generate button, and the tool generates a Makefile containing
assignments saying software deadlock detection object module
and a device driver for SoCLC are included.

4.3 The linking process of specialized software
components for a function with different implemen-
tation

To generate a smaller RTOS from the given library,
it is necessary that only needed components be included
in the final executable file. One of the methods to
achieve this is very straightforward. For example, when
the user selects the software deadlock detection
component, then the tool generates a Makefile that
includes the software deadlock detection object. On the
contrary, when the user selects the hardware deadlock
detection unit, then the tool generates a different
Makefile that includes only the software device driver
object containing APIs that manipulate the hardware
deadlock detection unit. Therefore, the final executable
file will have either the software module or the device
driver module.

4.4 IPC module linking process
On the other hand, when the user selects IPC

methods, the inclusion process is more complicated than
the linking process of specialized software components.
IPC modules that implement IPC methods (such as
queue, mailbox, semaphore and event) are provided as
separate files. The linking process for IPC modules is
shown in Figure 4. From the GUI of the tool, the user
can choose one or more IPC methods according to his

Figure 3. A GUI tool for a RTOS component selection

application requirements. For example, as shown in
Figure 3, when the user selects only the semaphore
component among IPC methods, the tool generates a
user.h file which has a semaphore definition and is used
by the C pre-processor. Without automation, user.h must
be written by hand. This user.h file will then be included
into user.c, which contains all the call routines of IPC
creation functions. Each of the call routines is enclosed
by a #if~#endif compiler directive and also corresponds
to a C source file. During C pre-processing, the compiler
will include the semaphore call routine. Thus, during
linking, the linker will include the semaphore module
from the Atalanta library in the final executable file
because the semaphore creation function is needed (the
creation and management functions for semaphores are
contained in semaphore.c in Atalanta [12]).

4.5 Assumption of our simulation framework
As described in the first paragraph of Section 3, we

use PSPs from Mentor Graphics; therefore, we only
generate PE wrappers instead of IP cores themselves.

4.6 The configuration of the hardware modules of an
RTOS

In this section, we describe how a user-selected
hardware RTOS component is integrated to the target
architecture. The final output of the tool is a Verilog
hardware description language (HDL) header file that
contains hardware IP modules such as PE wrapper,
memory, bus, SoCLC and/or SoCDDU. Here, we define
the “Base” system as an SoC architecture that contains
only essential components (needed for almost all
systems) such as PE wrappers, an arbiter, an address
decoder, a memory and a clock, which are stored in the
Base Architecture Library shown in Figure 2. Optional
hardware RTOS components such as SoCLC and
SOCDDU are stored in the Hardware RTOS Library.

Optional hardware RTOS components chosen by the
user are integrated together with the Base system. The
generation of a target SoC Verilog header file (which
contains the Base architecture together with configured
hardware RTOS components, if any) starts with an
architecture description that is a data structure describing
one of the target SoC architectures. From the tool, if the
user does not select any hardware RTOS components, a
Verilog header file containing only the Base system will
be generated. On the other hand, if the user wants to use
SoCLC to support fast synchronization among PEs (e.g.,
to meet hard timing deadlines of an application), he can
select SoCLC in the hardware component selection.
Then the tool will automatically generate an application
specific hardware file containing SoCLC. This hardware
file generation is performed by a C program (to be
explained in the next section), which is compiled with a
TCL wrapper.

4.7 A HDL file generation example
Throughout this section, we take an SoC system

utilizing the SoCLC, shown in Figure 5, as an example
target to describe the hardware configuration process.
The SoCLC system of Figure 5 consists of more than ten
modules such as a clock generator, MPC750s, an
address decoder, L2 cache memory, a memory arbiter,
interrupt controller and SoCLC. Of course, in this
system, a device driver software module is also needed
to support SoCLC hardware; such device driver software
is included in the final executable file by the
aforementioned IPC module linking process described in
Section 4.4. Our tool takes the user input via the GUI
shown in Figure 3 and uses the hardware IP libraries to
generate the code for each module and for the
instantiation of all Verilog files in appropriate link files
(usually a single “top” module in a “top” Verilog file).

 Make

user.c

user.h

user.i
Semaphore functions

Queue functions

Mailbox functions

ddutest.x

Generated Configuration

Link

Only Semaphore
module chosen by

the user (in this
example)

Library (Atalanta.a)

…

Contains all IPC
creation calls each of

which is enclosed by a
#if~endif directive

Contains only the
semaphore creation
call (temporary file)

Controls compilation and
linking processes

Event functions

Memory functions
Selection flow of inter-process
communication (IPC) methods

Makefile

Pre-processing include

user.o

GUI +
Configuration

Generator

application

Figure 4. Example of the IPC module linking process

Example 2: Verilog file generation. Here, we describe in
more detail the generation process of a top-level Verilog file for
the SoCLC system step by step. When the user selects `SoCLC ’
in the tool, as shown in Figure 3, and clicks the `Generate ’
button, the tool calls a hardware generation program, Archi_gen
(written in C), with architecture parameters. Then, the tool
makes a compile script for compiling the generated Verilog file.
As a next step, Archi_gen makes the hardware Verilog file as
follows (see Figure 6). First, Archi_gen extracts (i) all needed
modules according to the SoCLC system description of Figure 5.
Second, Archi_gen generates (ii) the code for wiring up the
SoCLC system (including all buses). Third, Archi_gen generates
(iii, see Figure 6) the instantiation code according to the
instantiation type of the hardware modules chosen. In this step,
Archi_gen also generates instantiation code for the appropriate
number of PEs according to the user selection of the number of
PEs in the tool. In our example, Archi_gen generates the code
for PE instantiation four times each for one MPC750. Fourth,
Archi_gen extracts the initialization code (needed for test) for
necessary signals according to the SoCLC initialization
description. Finally, a Verilog header file containing an SoCLC
system hardware architecture is made.

5. Experimental Results
We have used our framework to generate five

hardware/software RTOS configurations for five
systems as shown in Figure 7. Here, we use the word
“system” to refer to an SoC architecture with an RTOS.
Each SoC architecture has four MPC750s and additional
hardware modules -- for example, the modules shown in
Figure 5. The first configuration in Figure 7, marked as
“SW RTOS w/ sem” (with semaphore), is for the system
implementing a database transaction example [14] with
semaphores and spin-locks. For comparison with the
first system, we generated the second configuration,
“SW RTOS + SoCLC”, which utilizes SoCLC along
with the same database example. The third configuration,
“SW RTOS w/ ddm” (with a software deadlock
detection module), is for the system implementing an
example motivated by a Jini lookup service application
[15]. The fourth configuration, “SW RTOS + SoCDDU”,
is for the system utilizing SoCDDU for comparison with
the third system. The fifth configuration, “SW RTOS +
SoCLC + SoCDDU”, is for the system utilizing both
SoCLC and SoCDDU.

To make RTOS hardware instantiation scalable and
to support user-directed automatic RTOS configuration,
we changed the given structure of the Verilog code of
the previously implemented systems [1, 2] to a
hierarchical structure so that the instantiation process
can be done more easily. In a hierarchical structure, a

RTOS1

SW
RTOS

w/ sem

Hardware
RTOS

Library

Software
RTOS

Library

GUI tool

SW
RTOS +
SoCLC

SW
RTOS

w/ ddm

SW
RTOS +
SoCDDU

SW RTOS
+ SoCLC

+SoCDDU

Compile Stage for each systemApplication

Executable HW
file for each

Executable SW
file for each

Simulation in
Seamless CVE

User
Input

Figure 7. Five custom hardware/software
RTOS instantiations and their verification setup

Base
Architecture

Library

VCS XRAY

RTOS2 RTOS3 RTOS4 RTOS5

MPC750-3

MPC750-4

MPC750-2

SoCLC

FPGA

MPC750-1

Memory
controller

and Memory

Arbiter,
Intr. Controller

and Clock

Figure 5. An SoC architecture with SoCLC

L1 L1 L1 L1

module PE
  ~~~ 
endmodule 

module PE 
  ~~~ 
endmodule

module clock
  ~~~ 
endmodule 

   (i) 
Extract 

module soclc 
  ~~~ 
endmodule

IP Library

 (ii)
Add wires

module PE
  ~~~ 
endmodule 

module clock 
  ~~~ 
endmodule

module soclc
  ~~~ 
endmodule 

  (iii) 
Instan-
tiation 

wires  
and  
signals 

PEs 1,2,3,… 

Memory 1,2,… 

SoCLC 

Arbiter 

Clock 

…

Figure 6. HDL file generation process 



 

hardware IP core is wrapped as an independent module, 
and it can be instantiated multiple times without 
interfering one another. Therefore, the scalability 
(mentioned in Section 1) can be ensured. 

Simulations of these five systems, as shown in 
Figure 7, were carried out using Seamless CVE [11]. We 
use Synopsys VCSTM for the Verilog simulator and 
XRAYTM from Mentor Graphics for application code 
debugging. To simulate the aforementioned examples, 
both the software part including application and the 
hardware part of the configured RTOS were compiled. 
Next, the executable application and the multi-processor 
hardware setups consisting of four MPC750’s were 
connected in Seamless CVE. The interfacing of the 
processors with the shared memory and other hardware 
RTOS components were established through an address 
decoder, an arbiter and a memory controller unit. 

To verify that the generated configurations for 
RTOS1 and RTOS2 (shown in Figure 7) are correct, we 
have used the same database example that the authors of 
the SoCLC implemented previously. The example 
includes accesses to short critical sections (CSes) as well 
as long CSes. Long CSes are the actual database object 
copying actions, whereas the short CSes are the 
synchronization actions among the server tasks and the 
client tasks [14]. 

Experimental results in Table 1 present the lock 
latency, lock delay and total execution time for two 
cases: (i) simulation with software semaphores and (ii) 
simulation with SoCLC (hardware-supported sema-
phores); both were run with 40 tasks [1]. As seen in the 
table, the SoCLC mechanism achieves 27% overall 
speedup in the total execution time of the database 
example. 

We used FPGA Express from Synopsys to synthesize 
the SoCLC in Xilinx XC4000E 4003EPC84 [16]. The 
total elements for an SoCLC with 64 short CS locks and 
64 long CS locks are 532 sequential logics and 9036 
other gates (as shown in Table 3). From these results, the 
user can choose between two tradeoffs: gain a speedup 
using the SoCLC with chip space overhead versus keep 
the available reconfigurable logic in the SoC available 
for other uses and instead use the slower software 
semaphore synchronization method. 

To verify that the generated configurations for 
RTOS3 and RTOS4, shown in Figure 7, are correct, we 
consider how the SoCDDU would perform in a real-life 
example. We devised an example motivated by a Jini 
lookup service application [15], where client 
applications can request services through intermediate 
layers (i.e., lookup, discovery and join). This example 
has four clients and four services. Here, clients are PEs 
on which application tasks request resources; the 
resources are PCI, MPEG, FFT and wireless interface 
hardware units. The first PE processes video streams. 
The second PE completes some signal processing 
algorithms. The third PE handles services such as fax, 
voice and email. The fourth PE handles communication 
functions. Because this is a system with multiple PEs 
and multiple resources, it is possible that a deadlock may 
occur. Therefore, this is a good example that can exploit 
the SoCDDU. We devised a sequence of requests and 
grants that leads to a deadlock at time t5 in Figure 8 (for 
the exact detailed sequence, please see [2]). The 
processing times shown in Figure 8 are not from an 
actual industrial product but instead are estimates 
intended to exemplify an application with short 
execution times. We measured the execution time in 
CPU clock cycles, where the CPU, MPC750, has an 
83.3MHz clock, with the SoCDDU on the same clock. 
We assume that if a PE needs two resources, it cannot 
proceed in its computation until it acquires both 
resources. This assumption is valid in typical multimedia 
applications processing streamed data.  

Suppose we start deadlock detection after event e5 
occurs, and the deadlock detection time is ∆. What we 
are interested in is the values of ∆ with different 
deadlock detection methods. We compare the impact on 
deadlock detection time and total execution time of both 
methods: software deadlock detection versus SoCDDU. 
The result is shown in Table 2. The total execution time 
is reduced by 16926 clock cycles, a speedup of 38% up 
to deadlock discovery. 

We also synthesized the SoCDDU using FPGA 
Express targeted to XC4000E 4003EPC84. The total 
elements of the SoCDDU for our example are 10 
sequential logics and 559 other gates. Table 3 
summarizes the area overhead of our specific 

Table 1. Average-case simulation results of the database example 

 * Without 
SoCLC 

With 
SoCLC Speedup

Lock Latency 
(clock cycles) 1200 908 1.32x 

Lock Delay 
(clock cycles) 47264 23590 2.00x 

Execution Time 
(clock cycles) 36.9M 29M 1.27x 

* Semaphores for long CSes and spin-locks for short 
CSes are used instead of SoCLC. 

MPC750-2 

MPC750-3 

MPC750-1 
t1=1545 

time(cycles) 

t3=16955 

t2=9684 

t4=41924 

t5=44203 

t5+∆ 

Figure 8. Event sequence 

e1 e4 

e3 e5 

e2 

Application start



 

instantiations of the SoCLC and SoCDDU both in terms 
of a semi-custom VLSI implementation and an 
implementation in Xilinx reconfigurable logic. Please 
note that the SoCLC and SoCDDU are scalable with a 
variable area based on the number of lock variables or 
the number of requestors/resources [1, 2]. From these 
results, the user can also consider tradeoffs between the 
SoCDDU with chip space overhead in reconfigurable 
logic versus the software deadlock detection method 
with slower execution time but no hardware area 
overhead. 

 
Table 2. Deadlock detection time and total execution time 

Method of Deadlock 
Detection 

Detection Time ∆ 
(Cycles) T5+∆ 

Software Algorithm 16928 61131 
SoCDDU 2 44205 

 
Table 3. Hardware area 

Total area in SoCLC (64 short CS locks + 
64 long CS locks) 

SoCDDU (5 Processors x 
5 Resources) 

Semi-custom VLSI 7435 gates using TSMC 
0.25µm standard cell library 

364 gates using AMI 
0.3µm standard cell library

Seq. logics 532 10 Xilinx 
XC4000E 4003EPC84 Other gates 9036 559 
 
6. Conclusion 

We have presented a framework for user-directed 
automatic generation of configuration files for a custom 
hardware/software RTOS for SoC. Our framework is 
implemented in Tcl/Tk and in C, enabling automatic 
generation of different mixes of hardware and software 
versions of the SoCLC [1] and SoCDDU [2] RTOS 
components. The framework helps the user explore 
which configuration is most suitable for his specific 
application or set of applications. This exploration also 
helps the user examine different SoC architectures prior 
to fabrication. Our framework is especially useful in 
post-fabrication customization of an SoC with large 
amounts of reconfigurable logic where the user wants to 
efficiently explore the RTOS design space afforded by 
placing parts of the RTOS in reconfigurable logic. 

We have verified the correctness of our framework 
through the simulation of two examples. We have five 
different instantiations of a custom hardware/software 
RTOS. Two of the instantiations were simulated with the 
example of client-server pair interactions [1]. Two more 
instantiations were simulated with the example 
implementing a novel deadlock detection algorithm [2]. 
The hardware part of the fifth instantiation (with both 
SoCLC and SoCDDU hardware units) was also 
simulated for correct operation (but without a full 
application example). Thus, from our framework, the 
user can explore RTOS design space by configuring 
various tradeoffs between software and hardware 
modules and by simulating different RTOS 

configurations in a co-design simulator. Therefore, our 
tool can be considered to be an aid to user-directed 
hardware/software partitioning [5, 6]. 

We are currently working on the configuration of a 
system with SoCDMMU [3]. We would like to extend 
our research to the configuration of heterogeneous multi-
processor systems each with a custom hardware/ 
software RTOS.  

 
7. Acknowledgements 

This research is funded by NSF under INT-9973120, 
CCR-9984808 and CCR-0082164. We acknowledge 
donations received from Denali, Hewlett-Packard, Intel, 
LEDA, Mentor Graphics, SUN and Synopsys. 

 
8. References 
 [1] B. S. Akgul, J. Lee and V. Mooney, “System-on-a-Chip processor 

synchronization hardware unit with task preemption support,” 
International Conference on Compilers, Architecture and 
Synthesis for Embedded Systems (CASES ‘01), pp.149-157, 
November 2001. 

 [2] P. H. Shiu, Y. Tan and V. Mooney, “A novel parallel deadlock 
detection algorithm and architecture,” 9th International Workshop 
on Hardware/Software Co-Design (CODES ‘01), pp.30-36, April 
2001. 

 [3] M. Shalan and V. Mooney, "A dynamic memory management unit 
for embedded real-time System-on-a-Chip," International 
Conference on Compilers, Architecture and Synthesis for 
Embedded Systems (CASES '00), November 2000, pp. 180-186. 

 [4] The international technology roadmap for semiconductors, edited 
by Semiconductor Industry Association, November 2001, 
http://semichips.org. 

 [5] G. D. Micheli and M. Sami, editors, Hardware/Software Co-
Design, Kluwer Academic Publishers, Norwell, MA, 1996. 

 [6] R. K. Gupta, Co-synthesis of Hardware and Software for Digital 
Embedded Systems, Kluwer Academic Publishers, Boston, MA, 
1995. 

 [7] F. Balarin, M. Chiodo, A. Jurecska and L. Lavagno, “Automatic 
generation of real-time operating system for embedded systems,” 
Proceedings of the 5th International Workshop on 
Hardware/Software Co-Design (CODES/CACHE ’97), 1997. 

 [8] L. Gauthier, S. Yoo and A. Jerraya, “Automatic generation and 
targeting of application-specific operating systems and embedded 
systems software,” IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, 20(11), pp.1293-1301, 
November 2001. 

 [9] D. Lyonnard, S. Yoo, A. Baghdadi and A. Jerraya, “Automatic 
generation of application-specific architectures for heterogeneous 
multiprocessor system-on-chip,” 38th Design Automation 
Conference (DAC 2001), June 2001. 

[10] S. Vercauteren, B. Lin and H. Man, “Constructing application-
specific heterogeneous embedded architectures from custom 
hardware/software applications,” ACM/IEEE Design Automation 
Conference, pp. 521-526, June 1996. 

[11] Mentor Graphics, Hardware/Software Co-Verification: Seamless, 
http://www.mentor.com/seamless/. 

[12] D. Sun et al., “Atalanta: A new multiprocessor RTOS kernel for 
System-on-a-Chip Applications,” GIT-CC-02-19, 
http://www.cc.gatech.edu/pubs.html. 

[13] J. Ousterhout, Tcl/Tk, http://home.pacbell.net/ouster/. 
[14] M. A. Olson, “Selecting and implementing an embedded database 

system,” IEEE Computer, pp.27-34, September 2000. 
[15] S. Morgan, “Jini to the rescue,” IEEE Spectrum, 37(4), pp 44-49, 

April 2000. 
[16] Xilinx, http://www.xilinx.com. 


