
Combining Data Remapping and Voltage/Frequency Scaling of Second
Level Memory for Energy Reduction in Embedded Systems

Sudarshan K. Srinivasan, Jun Cheol Park and Vincent J. Mooney III
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA-30332
{darshan, jcpark, mooney}@ece.gatech.edu

Abstract

In this paper we show that the energy reductions obtained from
using two techniques, data remapping and voltage/frequency
scaling of off-chip bus and memory, combine to provide inter-
esting trade offs between energy, execution time and power.
Both methods aim to reduce the energy consumed by the mem-
ory subsystem. Data remapping is a fully automatic compile
time technique applicable to pointer-intensive dynamic appli-
cations. Voltage/frequency scaling of off-chip memory is a
technique applied at the hardware level. When combined to-
gether, energy reductions can be as high as 46% .The improve-
ments are verified in the context of two OLDEN pointer-centric
benchmarks, namely Perimeter and Health.

1 Introduction

In embedded systems, memory is a significant power/energy
sink, often consuming as much as half of the total
power/energy [2]. In this paper we focus on simultaneously
applying a hardware technique and a compile time technique
in order to obtain significant energy savings. Our target pro-
cessor is an ARM-like processor. The two methods we ap-
ply are data remapping (compile time technique) and volt-
age/frequency scaling of the off-chip bus and memory.

An embedded system usually consists at least of a processor
(including L1 cache), off-chip memory and off-chip bus. The
off-chip components are highly capacitive. This causes them
to consume close to half of the digital system power (where
digital system power is the power consumed by the processor
plus memory). Slowing down the off-chip memory by scaling
the voltage and frequency[19, 20, 15] can be used to reduce the
energy consumed by the off-chip memory. But slowing down
the off-chip memory will also reduce performance.

Data remapping[11, 10] is a compile time technique. It is
used to remapp the application’s data layout so that data el-
ements that are accessed contemporaneously are placed to-
gether in memory. Remapping improves spatial locality and
thus reduces cache misses. Cache misses are expensive in

terms of performance. Remapping leads to a reduction in the
execution time and energy.

The main drawback of the voltage/frequency scaling tech-
nique is the reduction in performance. Combining the two
techniques can increase the overall reduction in energy. Fur-
thermore, where execution time allocated is fixed, the combi-
nation of faster execution due to data remapping can offset the
slower execution time due to reduced clock frequency for off-
chip memory resulting in the same original execution time at
dramatically reduced power (and energy). Section 2 described
related work. Section 3 describes the experimental infrastruc-
ture used for estimating the power and energy of the system for
the before and after cases. Section 4 gives an overview of the
data remapping algorithm. Section 5 describes the method-
ology used for voltage and frequency scaling, and Section 6
gives our design space exploration. Section 7 describe the re-
sults obtained after applying the two methods in terms of en-
ergy savings, and Section 8 concludes the paper.

2 Related Work

A framework similar to our infrastructure is Simplescalar
ARM. It is a framework for power and performance analysis.
Another is SimplePower[14] which implements a subset of the
instructions supported by Simplescalar.

Unlike Simplescalar, our model (MARS, introduced later)
is at the RTL (Register Transfer Level) level and thus is more
accurate.

With respect to hardware techniques there is a lot of
work going on to gate supply voltage to cache memories[6,
12], dynamically adjust the frequency or shutdown unused
modules[4].

Related work in data reorganization[7] propose automated
field re-ordering that assigns temporally related fields to adja-
cent memory locations. But they offer only partial solutions
as they do not consider fields between different instances of a
record.



Benchmark Program(C/C++)

Binary Translation

ARM9 Based System Architecture

RTL Description(Verilog)

Toggle Rate(Activity) Generation

Functional Simulation(VCS) Execution Time

System Power Analysis

Energy Analysis

L1 and L2 cachesOff−chip bus analysis

Tricepts

Off−chip data path analysis

Figure 1: Experimental Infrastructure

3 Experimental Setup

In this section we describe the experimental setup used to sim-
ulate and evaluate the combined techniques of data remapping
and voltage/frequency scaling.

The core of the simulation environment is MARS (Michigan
Arm Simulator, obtained from University of Michigan)[16],
capable of running ARM instructions. The power of the core
processor can be estimated using Synopsys Power Compiler.
The switching activity of the various nets is collected via sim-
ulation. The MARS model was synthesized using TSMC
.25u library[18]. Using Synopsys Power Compiler[17], power
models of the synthesized MARS model were created. The
processor power was estimated using the power models and
the switching activity of the nets at 2.75 volts.

The remapping benchmarks were implemented using
TRIMARAN, a compiler framework (which includes the
TRICEPS[8] ARM code generator and smart memory and
cache hierarchy simulator (SMACHS)[21]. The execution
statistics from TRIMARAN are used to estimate the power of
the memory subsystem.

The model used has an L1 on-chip cache and L2 off-chip
cache. To estimate the energy of the primary and secondary
cache we assume an SRAM model. The Kamble and Ghose
approach is used for energy estimation[9]. Execution statis-
tics such as cache requests, read hits and misses, write hits
and misses, execution cycles for both L1 and L2 cache are
required. These execution statistics were obtained from sim-
ulations using SMACHS. Also, information about the cache
configuration such as cache size, block size and tag size are
required. One of the main disadvantages of the Kamble and

Ghose method is that it does not model the I/O pads. An-
other disadvantage is that the model only accounts for dy-
namic power dissipation. This approximation (not including
static/leakage power) is valid with respect to 0.25u technology
but may not be valid for smaller(e.g., 0.09u) technologies.

The off-chip bus power is estimated using Spectre simula-
tion. The driver component is modeled by a series of inverters.
The model is designed using 0.25u TSMC library. The bus line
capacitance values are obtained from actual measurements of
a PCB with an Intel StrongARM1110 processor.

The total system power is estimated using the following ap-
proach. The energy for the L1 and L2 cache is obtained di-
rectly using the Kamble and Ghose model[15, 9]. The pro-
cessor power is obtained from the Synopsys Power Compiler.
Processor power is multiplied with the execution time to ob-
tain the processor energy. The bus power obtained from the
Spectre simulations is also multiplied with the execution time
to obtain the energy of the off-chip bus. The energy from the
bus, processor, L1 and L2 cache are summed up to get the total
system power. The resulting measurements for our examples
are shown in Section 7.

4 Data Remapping

Data Remapping is a compile time technique. It is an efficient
remapping of an application’s data layout in memory such that
data elements that are accessed contemporaneously are placed
together in memory. If a reference stream does not exhibit
address adjacency, valuable resources are wasted as data is
unnecessarily fetched and cached. The remapping technique
remaps elements into new sets such that data items that are
more likely to be used together are grouped together into the
same cache block.

The applications to which data remapping can be usefully
applied are record data type-heavy and pointer-heavy applica-
tions. Consider an example where in a file of records, a par-
ticular field of all records has to be searched or modified. The
original mapping of the data in the memory will be such that
fields belonging to a particular record will be placed together.
If a cache line is fetched then all the data other than that par-
ticular field is wasted. Also the search for the next field will
lead to a cache miss. Instead, if all fields were placed together
in the above example then cache misses will be reduced. Also,
energy is not wasted in fetching data that is not useful. The
remapping algorithm is a combination of field reordering and
customized placement to exhibit better spatial locality.

The remapping optimization consists of three phases – gath-
ering phase, remapping of global data objects and remapping
of dynamic data objects. In the gathering phase, an analy-
sis of application memory access patterns along program hot-
spots[1] is performed. The remapping strategy cannot be arbi-
trarily applied to all data objects in the program. It is applied



based on the analysis obtained from the gathering phase. In the
second phase global data objects are remapped. Once the can-
didate records have been identified, global program variables
are filtered to isolate the arrays of records which are remapped.
The third phase remaps dynamic data objects (i.e., pointer vari-
ables). The third phase is crucial as applications increasingly
rely on dynamically allocated objects[3, 5].

5 Voltage and Frequency Scaling of
Off-Chip Memory and Buses

The power consumed is proportional to the square of the volt-
age. Thus, reducing the voltage will lead to a quadratic reduc-
tion in power. But when the voltage of a component is lowered
it leads to increase in delay which affects performance. The
off-chip memory and buses are highly capacitive and thus con-
sume close to half of the system power. To reduce the overall
system power significantly we scale the voltage of the off-chip
memory and buses. In our system the off-chip memory is an
L2 cache.

Figure 2 shows the slowing down of L2 memory. The orig-
inal system runs at 100MHz with the processor at 2.75 volts
and off-chip components (including bus and memory) at 3.3
volts. The voltage of the off-chip bus and memory was scaled
from 3.3 volts to 2 volts. This causes the delay of the off-chip
memory and bus to double. To take into consideration the in-
crease in delay, the frequency of the off-chip components was
scaled from 100MHz to 50MHz.

100 MHz

CORE CORE

100 MHz

L2 Memory

100 MHz

L2 Memory

50 MHz

Write Buffer

Figure 2: Slowing down L2 Memory

Frequency scaling is achieved by simulating the off-chip
components at 50MHz instead of the original 100MHz. The
D-Cache and I-Cache controllers were modified such that they
fetch data from the memory at 50MHz instead of the previous
100MHz. This is done by doubling the latency of the memory
(in our case the L2 cache) from 7 to 14 cycles. The voltage at
which power is estimated is reduced from 3.3 volts to 2 volts to
simulate voltage scaling in case of the off-chip bus and mem-
ory.

6 Design Space Exploration

The original system consists of the processor and off-chip
components running at 100MHz. We simulate the system us-

ing two benchmarks health and perimeter before remapping.
We call the original system the before case. The after case is
where the processor is simulated at 100MHz and the off-chip
components are simulated at 50MHz. The health and perime-
ter benchmarks are remapped and simulated with 50MHz L2
memory so that effect of combining both the techniques can
be determined. Switching activity files are collected from the
simulations using the MARS model and are used to determine
the processor and bus power in both cases. The execution
statistics from the Trimaran ARM simulator is used to deter-
mine the power for the L1 cache and off-chip L2 cache.

The data remapping allows the program to achieve the same
overall execution time with half the cache resources. Since the
cache is expensive in terms of both power and cost, halving
the cache size would lead to roughly half the cost and power
requirements. Results have been obtained by using half the L1
and L2 cache size.

The power calculations do not include the overhead of mul-
tiple supply voltages as we assume that multiple supply volt-
ages are already present in the board. Also it is assumed that
voltage scaling (i.e., changing the frequency of off-chip com-
ponents from 3.3 volts to 2 volts) is done statically.

7 Results

The energy savings from combining the two techniques has
been shown for two Olden benchmarks[13], namely perimeter
and health. The benchmarks selected are such that they are
suitable for remapping. The perimeter allocates quad trees at
the program startup and do not modify them. The primary
data structure used in health is a link list to which elements are
added and removed.

Table 1 shows the results for the health benchmark. The
L1 is a 32KB cache with 16 bytes line size. The L2 is a 1MB
cache with 32 bytes line size. We find that for the health bench-
mark there is a large reduction in the execution cycles, but for
perimeter the reduction in execution cycles is not as much (see
Table 2. Data remapping will cause an increase in performance
but much of this performance gain is lost due to slowing down
the off-chip memory. This is clearly seen in the case of the
Health benchmark. Also we find that for both benchmarks
there is a large decrease in the energy of the L2 cache. Even
though the processor power is almost constant, the decrease in
processor energy is due to gains in performance due to remap-
ping. We are able to achieve a maximum of 46% energy gains
in the Health benchmark. From our experiments, we observed
that there is no simple linear relationship among data remap-
ping, frequency/voltage scaling of second level memory, en-
ergy reduction and energy delay reduction.

The remapping technique allows a program to run with the
same execution time but with far less the memory. To explore
the design space, we also considered reducing the L1 and L2



Table 1: Energy Delay with Frequency/Voltage Scaling of Memory (FVM) and Data Remapping(DR) for Health Benchmark
Before After After After After After After

DR, FVM DR FVM DR+FVM DR+FVM DR+FVM DR+FVM

1/2size L1 1/2size L2 1/2size L1,L2

Execution Cycles 803645821 479612138 892552982 578046486 603275469 711151104 736311686

Delay(Execution Time)(s) 8.036 4.796 8.926 5.780 6.033 7.112 7.363

Energy(J) 17.076 9.274 14.316 9.274 9.468 11.158 10.134

Energy*Delay 137.231 44.479 127.778 53.608 57.118 79.350 74.618

% Energy Reduction 0.00 39.33 16.16 45.69 44.55 34.66 40.65

% Energy*Delay Reduction 0.00 67.59 6.89 60.94 58.38 42.18 45.63

Table 2: Energy Delay with Frequency/Voltage Scaling of Memory (FVM) and Data Remapping(DR) for Perimeter Benchmark
Before After After After After After After

DR, FVM DR FVM DR+FVM DR+FVM DR+FVM DR+FVM

1/2size L1 1/2size L2 1/2size L1,L2

Execution Cycles 1065497740 967549770 1073983968 999065267 999305168 999095525 999339410

Delay(Execution Time)(s) 10.655 9.675 10.740 9.991 9.993 9.991 9.993

Energy(J) 23.361 21.648 17.860 16.897 16.414 14.221 13.828

Energy*Delay 248.911 209.455 191.814 168.812 164.026 142.081 138.189

% Energy Reduction 0.00 7.33 23.55 27.67 29.74 39.13 40.81

% Energy*Delay Reduction 0.00 15.85 22.94 32.18 34.10 42.92 44.48

Table 3: Energy results after remapping and Voltage Scaling(L1=32KB, L2=1MB) for Health Benchmark
Execution Processor Off-chip Bus L1 Cache L2 Cache Total % reductions Total

Cycles Energy(J) Energy(J) Energy(J) Energy(J) Energy(J) Energy

578046486 6.415 0.433 0.3155 2.104 9.274 45.69



cache sizes to half their original sizes. The last three columns
in Tables 1 and 2 show the energy results after halving L1
cache, L2 cache and both L1 and L2 cache respectively. We
find that as expected the energy requirements of the cache also
reduced by half. In case of the Perimeter benchmark the ex-
ecution time remains the same and thus the energy saving in
the memory subsystem is reflected in the overall energy gains.
A maximum of 40.81% energy reduction is achieved in case
of Perimeter benchmark when both caches are reduced to half
their size. But in case of the Health benchmark, reduction in
cache size leads to increase in the execution time. Even though
the energy requirement of the memory subsystem is reduced,
this is not reflected in the overall energy gains due to the in-
crease in execution cycles. Thus, for the Health benchmark,
the maximum energy reduction of 45.69% is found with both
caches at their original sizes (L1=32KB, L2=1MB).

8 Conclusion

There are many techniques at both the hardware and com-
piler level aimed at saving energy and power. In this work we
have demonstrated a combination of two techniques, one at the
hardware level and one at the compiler level. The main draw-
back of hardware techniques is that they tradeoff power with
performance. In our work by combining the two techniques,
we are able to obtain energy gains without leading to a per-
formance loss. For future work, we are looking at additional
architecture level techniques aimed at the memory subsytem
(specifically at the cache) and processor where compiler and
hardware techniques interact to reduce energy.

9 Acknowledgements

This research was funded bt DARPA under contract num-
ber F30602-00-2-0564. We acnowledge help received from
Rodric Rabbah in running the Trimaran simulations of the
Health and Perimeter benchmarks. We also acknowledge do-
nations received from Cadence, Hewlett-Packard, LEDA Sys-
tems, Mentor Graphics, Sun and Synopsys.

References

[1] T. Ball and J. Larus, ”Efficient path profiling,” Proceed-
ings of the 29th Annual International Symposium on Mi-
croarchitecture, December 1996.

[2] P. Panda, N. Dutt and A. Nicolau, “Memory Issues In
Embedded Systems-On-Chip, Optimizations and Explo-
ration, ” Kluwer Academic Publishers, 1999.

[3] B. Calder, C. Krintz, S. John and T. Austin, ” Cache-
conscious data placement,” Proceedings of the Eighth

International Conference on Architectural Support for
Programming Languages and Operating Systems, pp.
139-149, October 1998. Symposium on Theory of Com-
puting, 1978.

[4] A. Acquaviva, L. Benini and B. Ricco, “An Adaptive Al-
gorithm for Low-Power Streaming Multimedia Process-
ing,” Proceedings of Design Automation and Test in Eu-
rope, pp. 273-279, March 2001.

[5] T. Chilimbi, M. Hill and J. Larus, ”Cache-conscious
structure layout,” Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementatio, pp. 1-12, May 1999.

[6] L. Benini, A. Macii, E. Macii and M. Poncino, "Syn-
thesis of Application-Specific Memories for Power Op-
timization in Embedded Systems," Proceedings of 38th
Design Automation Conference, pp. 300-303, June 2000.

[7] T. Chilimbi, B. Davidson and J. Larus, “Cache-conscious
structure definition,” Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pp. 13-24, May 1999.

[8] L. Chakrapani, K. Palem and W. Wong, “Enhancing
the TRIMARAN compiler infrastructure for StrongARM
code generation,” Technical Report CREST-TR-01-001,
Georgia Institute of Technology, May 2001

[9] M. Kamble and K. Ghose ”Analytical energy dissipation
models for low power caches,” Proceedings of the In-
ternational Symposium on Low Power Electronics and
Design, pp. 143-148, Aug. 1997.

[10] K. Palem, R. Rabbah, P. Korkmaz, V. Mooney and K.
Puttaswamy, "Design Space Optimization of Embedded
Memory Systems via Data Remapping," Proceedings of
the Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES’02), pp. 28-37, June 2002.

[11] K. Palem and R. Rabbah. “Data remapping for design
space optimization of embedded cache systems.” Tech-
nical Report GIT-CC-02-10, Georgia Institute of Tech-
nology, March 2002.

[12] T. Ishihara and K. Asada, "A System Level Memory
Power Optimization Technique using Multiple Supply
and Threshold Voltages," Proceedings of 38th Design
Automation Conference, pp. 456-461, June 2001.

[13] OLDEN benchmark suite. http://www.cs.princeton.edu/
mcc/olden.html.

[14] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Ir-
win, "The Design and Use of Simplepower: A Cycle-
Accurate Energy Estimation Tool," Proceedings of 38th
Design Automation Conference, pp. 340-345, June 2000.



[15] P. Korkmaz, K. Puttaswamy and V. Mooney, “Energy
modeling of a Processor core using Synopsys and of the
Memory Hierarchy using the Kamble and Ghose Model,”
Technical Report, CREST-TR-02-002, Georgia Institute
of Technology, February 2002.

[16] The SimpleScalar-Arm Power Modeling Project,
http://www.eecs.umich.edu/~jringenb/power/

[17] Synopsys, Inc., http://www.synopsys.com

[18] LEDA Systems, Inc., http://www.ledasys.com

[19] K. Puttaswamy, K. Choi, J. C. Park, V. J. Mooney III,
A. Chatterjee and P. Ellervee, “System Level Power-
Performance Trade-Offs in Embedded Systems Using
Voltage and Frequency Scaling of Off-Chip Buses and
Memory,” Proceedings of International Symposium
on System Synthesis, to appear, October, 2002, Kyoto,
Japan.

[20] K. Puttaswamy, L. N. Chakrapani, K. W. Choi, Y. S.
Dhillon, U. Diril, P. Korkmaz, K. K. Lee, J. C. Park, A.
Chatterjee, P. Ellervee, V. Mooney, K. Palem and W. F.
Wong, "Power-Performance Trade-Offs in second level
memory used by an ARM-Like RISC Architecture," in
the book Power Aware Computing, Rami Melhem and
Robert Graybill, Eds., Kluwer Academic/Plenum Pub-
lishers, 2002.

[21] Trimaran, http://www.trimaran.org


