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Abstract 
It is widely acknowledged that even as VLSI technology 
advances, there is a looming crisis that is an important 
obstacle to the widespread deployment of mobile embedded 
devices, namely that of power. This problem can be tackled 
at many levels like devices, logic, operating systems, micro-
architecture and compiler. While there have been various 
proposals for specific compiler optimizations for power, 
there has not been any attempt to systematically map out 
the space for possible improvements. In this paper, we 
quantitatively characterize the limits of what a compiler 
can do in optimizing for power using precise modeling of a 
state-of-the-art embedded processor in conjunction with a 
robust compiler. We provide insights to how compiler 
optimizations interact with the internal workings of a 
processor from the perspective of power consumption. The 
goal is to point out the promising and not so promising 
directions of work in this area, to guide the future compiler 
designer. 
 
 
1. Introduction 
The widespread deployment of embedded processors in 
mobile devices promises to open up new frontiers in 
applications. However, an important barrier that can 
severely limit this development is the issue of power 
consumption. An energy efficient device, i.e. one that 
consumes low amount of power over time, can potentially 
last longer and would require less bulky power supply 
units. In most devices, the computing element accounts for 
a high portion of the energy consumption [1]. This is a 
well-known issue and is being attacked from various fronts.  

 

First is the design of low power VLSI devices and logic. It 
is well known that these make the most significant 
contribution to saving power. Next is the use of novel 
micro-architecture techniques such as voltage scaling. The 
third front is in the software runtime system like the 
operating system, which can utilize power saving micro-
architectural features and schedule tasks accordingly. An 
obvious trick the operating system can play, for example, is 
to put the processor in a low power mode during idle 
periods. Lastly, given an application, a compiler can 
attempt to optimize it for power. It is this last issue, which 
this paper will address. 

There have been a number of studies on compiler 
optimizations for power, for example [4]. However, as far 
as we know, there are no systematic studies that address the 
following question: “what phenomena in the interactions of 
the compiler, the application and the micro-architecture of 
a processor gives rise to energy savings?” 

The main contributions of this paper are as follows: 

• We present an integrated infrastructure consisting of a 
compiler and a gate-level model for a state-of-the-art 
embedded processor, namely an ARM-like processor [7], 
which we used to study precise energy consumption 
patterns. Actual power measurements on a StrongARM 
development board are also used to support our claims. 

• We quantitatively characterize the subtle interactions 
that accounts for power savings achieved by compiler 
optimizations. 

• We classify compiler optimizations into broad 
categories of how they achieve power savings and in doing 
so; point out the promising directions of research in this 
area. 

• We point out the limitations compilers face in existing 
embedded processors when optimizing for power. 
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It is hoped that this exploration will serve as a map for 
compiler writers wishing to tackle this important issue. 

The paper is organized as follows: In Section 2, we present 
the detailed model of our experiment infrastructure. In 
Section 3, we address a number of fundamental questions 
regarding compiler optimizations for power by means of 
carefully crafted experiments. These experiments were 
performed using our precise processor model simulator as 
well as actual measurements on a development board. In 
Section 4, we propose a taxonomy of compiler 
optimizations for power and examine how previous 
proposals can be fitted in our classification system. In 
Section 5, we propose a number of recommendations 
arising from the insights we gained from the experiments. 
This is followed by a conclusion. 
 
2. The Anatomy and Physiology of a Processor 
The twin issues of modeling and optimization of power 
consumption have to be addressed at several layers for an 
accurate and thorough result. Previous compiler 
optimization research in this area has either relied on actual 

power measurements of the processors [2] or has relied on 
architectural simulation [3], mathematical techniques and 
regression to model the behavior of the hardware. Actual 
measurement of the power consumed by a processor is 
difficult and error prone. Even if achieved, detailed 
information and insight regarding the power consumed by 
each of the architectural subsystems might not be available. 
On the other hand mathematical techniques, regression and 
architectural simulation might fail to provide accurate and 
reliable results. 

Our power research infrastructure consists of an optimizing 
compiler infrastructure called Trimaran [6]. A backend of 
Trimaran, called Triceps has been developed to generate 
code, which targets the ARM [7] architecture. The second 
part consists of a Verilog model of an ARM-like RISC 
processor developed by the University of Michigan [5]. 
The RTL core has been synthesized with the Synopsys 
Design Compiler [8] targeted towards a 0.25 micron TSMC 
library. The synthesized gate level netlist is placed and 
routed using Cadence Silicon Ensemble and Cadence 
Virtuoso.
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Synopsys Power Compiler is used as the power estimation 
and analysis tool. This tool has two interfaces, one to the 
simulation environment and the other to the synthesis 
environment. The switching activity of the various 
functional units of the ARM-like1 processor for a particular 
benchmark assembly generated by Trimaran is obtained 
from the simulation environment. Then the switching 
activity is annotated onto the synthesis environment to 
provide measurements of static and dynamic power. 
External models for bus and main memory are fed with the 
switching activity on the bus to obtain a measure of power 
dissipated by the bus and main memory. 

Thus our infrastructure provides an accurate and detailed 
estimate of the gate level power consumption while 
functioning as a seamless infrastructure for detailed and 
accurate study of compiler optimizations, architectural 
innovations and their impact on power and performance. 
The experiments are organized into studies of the ALU 
subsystem, the Register file and the Instruction and Data 
cache. 

In addition to the Trimaran–Verilog RTL infrastructure 
described above, there is a StrongARM SA 110-based 
development board called “Skiff” from the Compaq 
Western Research Laboratories. The processor on the board 
has a power supply that is distinct from that used by the 
other components on the board. Power consumed by the 
processor is measured by means of a sensitive 
measurement device measuring the current drawn by the  
 
 

 
                                                 
1 Since the actual details of the internal ARM micro-architecture is 
proprietary information, the Verilog model we used is that of a RISC 
approximation that executes the ARM instruction set. 

processor. Experiments are run on this board and the results 
are crosschecked with those produced by the Trimaran–
Verilog RTL infrastructure. Since the latter measures actual 
power consumption albeit at the granularity of the entire 
SOC processor while the former only models the core 
processor, measurements taken by both methods do not 
agree in absolute terms. However, what is important is 
whether the correlation of the results are preserved as this 
serves as an important verification of the model’s results. 
 
3. The Key Insights 
The experiments were conducted on the power 
measurement infrastructure with an aim of answering 
specific questions to get an insight into power dissipation 
and energy consumption. 
 
I. The ALU Subsystem 

A) Does reduction in switching activity reduce power? 

It was proposed in [9] that reduction in switching activities 
of the ALU translates to energy savings. To explore this, 
segments of code which compute the same value, but one 
which is optimized for minimal switching of the inputs and 
the other for which is modified for maximum switching 
were run on the model and power numbers collected. The 
Hamming distance, which is a count of the number of bit 
flips between two values, was considered as a measure of 
switching.
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It can be seen that there is virtually no improvement in 
power dissipation and energy consumption. This is in 
accordance with earlier studies on other architectures [2]. 
Hence the applicability of this technique should be further 
investigated before being pursued as a viable optimization 
for power and energy. 

 
B) Do all type of ALU instructions consume the same 
amount power?  

To explore this different types of instructions were run in a 
loop and the power numbers collected. It is observed that 
logical and add / subtract instructions consume the same 
amount of power and multiply consumes higher amount of 
power as well as takes a longer number of cycles to 
complete, thereby consuming more energy. Hence strength 
reduction by replacing multiplies with a series of additions 
and shifts would be beneficial. Further, since multiply takes 
only about 30% more power than adds and subtracts, care 
should be taken so that the number of instructions replacing 
multiply is no more than 30% of the total number of cycles 
taken by multiply instruction. Otherwise, the penalty 
incurred due to a larger cycle count would have a negative 
impact on energy even though the instructions themselves 
have a positive impact on power. 
 
II. The Register File 

A) Does the number of accesses to the register files play a 
role in power consumption? 

Two experiments, one that accesses values from registers 
and another that uses immediate operands were run on the 
Skiff board as well as on the Verilog model. 
 
 ALU + Reg File Power 

(Trimaran-Verilog) in 
mW 

System Power 
(Skiff Board) in 

mW 
Register 
Operands 4.784 776 
Immediate 
Operands 

4.784 760 
 
It can be observed that while the system power measured 
from the board shows a difference, the Verilog model does 
not. This is because in the model for both immediate as 
well as register operands the register file is accessed and in 
the appropriate operand is multiplexed into the ALU. In 
general, we can assume that number of accesses to the 
register file matters. Hence aggressive copy propagation 
and constant propagation should be done. Wherever 
possible immediate addressing should be used. The 
effectiveness of these optimizations is architecture 
dependent. 
 

B) Does the value accessed from the register file affect 
power?  

To explore this question, examples were constructed that 
access values from the register with maximum, 
intermediate and minimum amount of switching. Hamming 
distance was taken as a measure of switching. It is observed 
that more the switching of the value accessed from the 
register file more is the reported power consumption. The 
combined ALU and Register file power consumption is 
observed to increase by about 12% between minimum 
switching and maximum switching. This suggests a 
possible course of optimization through instruction 
scheduling and code transformation so as to minimize 
switching in register file access. 
 

 

Regfile + Alu Power 
(Trimaran-Verilog) in 

mW 

System Power 
(Skiff Board) in 

mW 

Maximum 
Switching 5.573 769 

Intermediate 
Switching 5.105 736 

Minimum 
Switching 4.978 708 
 
III. The Cache subsystem 

A) Do the number of accesses to the cache affect power?  

Three sections of code were run on the Trimaran-Verilog 
model and on the skiff board and the power numbers were 
collected. The code accessed the data cache 100%, 50% 
and 0% of times respectively. It is observed that there is 
about 24% more power consumption between no access to 
the data cache and full access to the data cache. 
 
 Data Cache Power 

(Trimaran-Verilog) in 
mW 

System Power 
(Skiff Board) in 

mW 
Maximum 
Access 152.168 1.150 
Intermediate 
Access 141.976 1.040 
Minimum  
Access 129.577 0.930 
 

B) Does the value accessed from the cache matter? 

To determine if heavy switching in the value accessed from 
the cache plays a role in power and energy consumption, 
experiments were setup where in one instance values were 
accessed alternately such that all 32 bits of the value 



switched. In the latter case no bits switched in the cache 
access. The measured power numbers are: 
 
 Data Cache Power 

(Trimaran-Verilog) in 
mW 

System Power 
(Skiff Board) in 

mW 
Maximum 
Switching 113.11 888 
Minimum 
Switching 

 
113.11 867 

 
Whereas the Trimaran-Verilog model does not show any 
variation the actual system power shows about 2.5% 
decrease in power. From this we can conclude 
implementation details of the cache play a role and power 
savings in case of no switching is perceptible but very less. 
One optimization that can be performed is to optimize 
cache accesses so that the accessed values don’t switch as 
much. 
 
4. The Taxonomy  
Based on our study, we would like to propose taxonomy of 
compiler optimizations from the perspective of power. We 
can classify all known compiler optimizations [10] into one 
of three classes. 
 
Class A Optimizations 
These optimizations benefit energy due to an improvement 
in performance. For a program, the energy consumed is a 
product of the average power dissipation per cycle and the 
number of cycles taken for completion. Any reduction in 
the number of cycles in the completion time would 
automatically translate into improvements in energy 
consumption [4]. Most of the current optimizations for 
power fall under this category.  Reductions in the number 
of loads and stores, procedure cloning, loop unrolling, 
procedure inlining, loop transformations, partial 
redundancy elimination are a few examples.  
 
Class B Optimizations 
These optimizations benefit energy while having no impact 
or a decrease in performance. Innovations in instruction 
scheduling, register pipelining, innovations in code 
selection to replace high power dissipating instructions 
with other instructions are a few examples. 
 
Class C Optimizations 
These optimizations are the ones that are bad for power 
dissipation and energy consumption. Typically the 
optimizations that have a negative impact on performance 
also have a negative impact on energy consumption. 
 
5. Recommendations  

5.1. To the Compiler Designer 

Based on the results presented above it is clear that the 
highest impact on energy consumption is by improving the 
performance of the code. Using the current day 
architectures the only optimizations for power that can be 
done is scheduling register accesses so that the register file 
switching is minimized and proper code selection and 
aggressive but careful strength reduction to replace power 
hogging instructions with other less power consuming 
instructions. 

 
5.2. To the Computer Architect 
 
Based on the measurements above it is clear that with 
current day architectures, novel compiler optimizations that 
target power are few. However there are several 
architectural innovations that can be exposed to the 
compiler so that many more Class B optimizations are 
facilitated. Examples would be a bit width sensitive ALU 
that can derive hints from the compiler, compiler controlled 
voltage and frequency scaling among other things. 
 
6. Conclusion 
In this paper, we explored the limits of a compiler in 
optimizing for power for existing processor architectures. 
Using a precise model of a popular embedded 
microprocessor, supported by actual measurement on a 
development board, experiments carefully crafted to test 
specific aspects of the micro-architecture were performed. 
Our study reveals that to a great extent compiler 
optimizations for locality and performance translate to 
optimizations for power. This is in agreement with other 
similar studies. We have also identified a few opportunities 
for novel optimizations such as reduction in register file 
switching do exist. However, our experiments have shown 
that in order to obtain substantial gains in energy saving, 
innovating micro-architectural features and exposing them 
to the compiler is necessary. 
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