
The Emerging Power Crisis in Embedded Processors:
What can a (poor) Compiler do?

L. N. Chakrapani
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, 30332

P. Korkmaz, V. J. Mooney III, K.
V. Palem, K. Puttaswamy

School of Electrical and Computer
Engineering

Georgia Institute of Technology
Atlanta, Georgia, 30332

W. F. Wong
Dept. of Computer Science

National University of Singapore
Singapore 117543

Abstract
It is widely acknowledged that even as VLSI technology
advances, there is a looming crisis that is an important
obstacle to the widespread deployment of mobile embedded
devices, namely that of power. This problem can be tackled
at many levels like devices, logic, operating systems, micro-
architecture and compiler. While there have been various
proposals for specific compiler optimizations for power,
there has not been any attempt to systematically map out
the space for possible improvements. In this paper, we
quantitatively characterize the limits of what a compiler
can do in optimizing for power using precise modeling of a
state-of-the-art embedded processor in conjunction with a
robust compiler. We provide insights to how compiler
optimizations interact with the internal workings of a
processor from the perspective of power consumption. The
goal is to point out the promising and not so promising
directions of work in this area, to guide the future compiler
designer.

1. Introduction
The widespread deployment of embedded processors in
mobile devices promises to open up new frontiers in
applications. However, an important barrier that can
severely limit this development is the issue of power
consumption. An energy efficient device, i.e. one that
consumes low amount of power over time, can potentially
last longer and would require less bulky power supply
units. In most devices, the computing element accounts for
a high portion of the energy consumption [1]. This is a
well-known issue and is being attacked from various fronts.

First is the design of low power VLSI devices and logic. It
is well known that these make the most significant
contribution to saving power. Next is the use of novel
micro-architecture techniques such as voltage scaling. The
third front is in the software runtime system like the
operating system, which can utilize power saving micro-
architectural features and schedule tasks accordingly. An
obvious trick the operating system can play, for example, is
to put the processor in a low power mode during idle
periods. Lastly, given an application, a compiler can
attempt to optimize it for power. It is this last issue, which
this paper will address.

There have been a number of studies on compiler
optimizations for power, for example [4]. However, as far
as we know, there are no systematic studies that address the
following question: “what phenomena in the interactions of
the compiler, the application and the micro-architecture of
a processor gives rise to energy savings?”

The main contributions of this paper are as follows:

• We present an integrated infrastructure consisting of a
compiler and a gate-level model for a state-of-the-art
embedded processor, namely an ARM-like processor [7],
which we used to study precise energy consumption
patterns. Actual power measurements on a StrongARM
development board are also used to support our claims.

• We quantitatively characterize the subtle interactions
that accounts for power savings achieved by compiler
optimizations.

• We classify compiler optimizations into broad
categories of how they achieve power savings and in doing
so; point out the promising directions of research in this
area.

• We point out the limitations compilers face in existing
embedded processors when optimizing for power.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’01, November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011…$5.00.

It is hoped that this exploration will serve as a map for
compiler writers wishing to tackle this important issue.

The paper is organized as follows: In Section 2, we present
the detailed model of our experiment infrastructure. In
Section 3, we address a number of fundamental questions
regarding compiler optimizations for power by means of
carefully crafted experiments. These experiments were
performed using our precise processor model simulator as
well as actual measurements on a development board. In
Section 4, we propose a taxonomy of compiler
optimizations for power and examine how previous
proposals can be fitted in our classification system. In
Section 5, we propose a number of recommendations
arising from the insights we gained from the experiments.
This is followed by a conclusion.

2. The Anatomy and Physiology of a Processor
The twin issues of modeling and optimization of power
consumption have to be addressed at several layers for an
accurate and thorough result. Previous compiler
optimization research in this area has either relied on actual

power measurements of the processors [2] or has relied on
architectural simulation [3], mathematical techniques and
regression to model the behavior of the hardware. Actual
measurement of the power consumed by a processor is
difficult and error prone. Even if achieved, detailed
information and insight regarding the power consumed by
each of the architectural subsystems might not be available.
On the other hand mathematical techniques, regression and
architectural simulation might fail to provide accurate and
reliable results.

Our power research infrastructure consists of an optimizing
compiler infrastructure called Trimaran [6]. A backend of
Trimaran, called Triceps has been developed to generate
code, which targets the ARM [7] architecture. The second
part consists of a Verilog model of an ARM-like RISC
processor developed by the University of Michigan [5].
The RTL core has been synthesized with the Synopsys
Design Compiler [8] targeted towards a 0.25 micron TSMC
library. The synthesized gate level netlist is placed and
routed using Cadence Silicon Ensemble and Cadence
Virtuoso.

Switching Activity

Trimaran

Verilog Model Synthesis

Verilog RTL

ARM Assembly

On-Chip Power

External Bus and
Memory Models

Place and Route

Technology Parameters

System Level Power

Fig 1. Infrastructure for Power measurement

Synopsys Power Compiler is used as the power estimation
and analysis tool. This tool has two interfaces, one to the
simulation environment and the other to the synthesis
environment. The switching activity of the various
functional units of the ARM-like1 processor for a particular
benchmark assembly generated by Trimaran is obtained
from the simulation environment. Then the switching
activity is annotated onto the synthesis environment to
provide measurements of static and dynamic power.
External models for bus and main memory are fed with the
switching activity on the bus to obtain a measure of power
dissipated by the bus and main memory.

Thus our infrastructure provides an accurate and detailed
estimate of the gate level power consumption while
functioning as a seamless infrastructure for detailed and
accurate study of compiler optimizations, architectural
innovations and their impact on power and performance.
The experiments are organized into studies of the ALU
subsystem, the Register file and the Instruction and Data
cache.

In addition to the Trimaran–Verilog RTL infrastructure
described above, there is a StrongARM SA 110-based
development board called “Skiff” from the Compaq
Western Research Laboratories. The processor on the board
has a power supply that is distinct from that used by the
other components on the board. Power consumed by the
processor is measured by means of a sensitive
measurement device measuring the current drawn by the

1 Since the actual details of the internal ARM micro-architecture is
proprietary information, the Verilog model we used is that of a RISC
approximation that executes the ARM instruction set.

processor. Experiments are run on this board and the results
are crosschecked with those produced by the Trimaran–
Verilog RTL infrastructure. Since the latter measures actual
power consumption albeit at the granularity of the entire
SOC processor while the former only models the core
processor, measurements taken by both methods do not
agree in absolute terms. However, what is important is
whether the correlation of the results are preserved as this
serves as an important verification of the model’s results.

3. The Key Insights
The experiments were conducted on the power
measurement infrastructure with an aim of answering
specific questions to get an insight into power dissipation
and energy consumption.

I. The ALU Subsystem

A) Does reduction in switching activity reduce power?

It was proposed in [9] that reduction in switching activities
of the ALU translates to energy savings. To explore this,
segments of code which compute the same value, but one
which is optimized for minimal switching of the inputs and
the other for which is modified for maximum switching
were run on the model and power numbers collected. The
Hamming distance, which is a count of the number of bit
flips between two values, was considered as a measure of
switching.

Alu Switching

796 787

5.67 5.66

1

10

100

1000

Regfile + Alu Power (Trimaran-
Verilog RTL Measurement)

System Power (Skiff Board
Measurements)

A
ve

ra
g

e
P

o
w

er
 (

in
 m

ill
iw

at
ts

)

Maximum Switching

Minimum Switching

It can be seen that there is virtually no improvement in
power dissipation and energy consumption. This is in
accordance with earlier studies on other architectures [2].
Hence the applicability of this technique should be further
investigated before being pursued as a viable optimization
for power and energy.

B) Do all type of ALU instructions consume the same
amount power?

To explore this different types of instructions were run in a
loop and the power numbers collected. It is observed that
logical and add / subtract instructions consume the same
amount of power and multiply consumes higher amount of
power as well as takes a longer number of cycles to
complete, thereby consuming more energy. Hence strength
reduction by replacing multiplies with a series of additions
and shifts would be beneficial. Further, since multiply takes
only about 30% more power than adds and subtracts, care
should be taken so that the number of instructions replacing
multiply is no more than 30% of the total number of cycles
taken by multiply instruction. Otherwise, the penalty
incurred due to a larger cycle count would have a negative
impact on energy even though the instructions themselves
have a positive impact on power.

II. The Register File

A) Does the number of accesses to the register files play a
role in power consumption?

Two experiments, one that accesses values from registers
and another that uses immediate operands were run on the
Skiff board as well as on the Verilog model.

 ALU + Reg File Power

(Trimaran-Verilog) in
mW

System Power
(Skiff Board) in

mW
Register
Operands 4.784 776
Immediate
Operands

4.784 760

It can be observed that while the system power measured
from the board shows a difference, the Verilog model does
not. This is because in the model for both immediate as
well as register operands the register file is accessed and in
the appropriate operand is multiplexed into the ALU. In
general, we can assume that number of accesses to the
register file matters. Hence aggressive copy propagation
and constant propagation should be done. Wherever
possible immediate addressing should be used. The
effectiveness of these optimizations is architecture
dependent.

B) Does the value accessed from the register file affect
power?

To explore this question, examples were constructed that
access values from the register with maximum,
intermediate and minimum amount of switching. Hamming
distance was taken as a measure of switching. It is observed
that more the switching of the value accessed from the
register file more is the reported power consumption. The
combined ALU and Register file power consumption is
observed to increase by about 12% between minimum
switching and maximum switching. This suggests a
possible course of optimization through instruction
scheduling and code transformation so as to minimize
switching in register file access.

Regfile + Alu Power
(Trimaran-Verilog) in

mW

System Power
(Skiff Board) in

mW

Maximum
Switching 5.573 769

Intermediate
Switching 5.105 736

Minimum
Switching 4.978 708

III. The Cache subsystem

A) Do the number of accesses to the cache affect power?

Three sections of code were run on the Trimaran-Verilog
model and on the skiff board and the power numbers were
collected. The code accessed the data cache 100%, 50%
and 0% of times respectively. It is observed that there is
about 24% more power consumption between no access to
the data cache and full access to the data cache.

 Data Cache Power

(Trimaran-Verilog) in
mW

System Power
(Skiff Board) in

mW
Maximum
Access 152.168 1.150
Intermediate
Access 141.976 1.040
Minimum
Access 129.577 0.930

B) Does the value accessed from the cache matter?

To determine if heavy switching in the value accessed from
the cache plays a role in power and energy consumption,
experiments were setup where in one instance values were
accessed alternately such that all 32 bits of the value

switched. In the latter case no bits switched in the cache
access. The measured power numbers are:

 Data Cache Power

(Trimaran-Verilog) in
mW

System Power
(Skiff Board) in

mW
Maximum
Switching 113.11 888
Minimum
Switching

113.11 867

Whereas the Trimaran-Verilog model does not show any
variation the actual system power shows about 2.5%
decrease in power. From this we can conclude
implementation details of the cache play a role and power
savings in case of no switching is perceptible but very less.
One optimization that can be performed is to optimize
cache accesses so that the accessed values don’t switch as
much.

4. The Taxonomy
Based on our study, we would like to propose taxonomy of
compiler optimizations from the perspective of power. We
can classify all known compiler optimizations [10] into one
of three classes.

Class A Optimizations
These optimizations benefit energy due to an improvement
in performance. For a program, the energy consumed is a
product of the average power dissipation per cycle and the
number of cycles taken for completion. Any reduction in
the number of cycles in the completion time would
automatically translate into improvements in energy
consumption [4]. Most of the current optimizations for
power fall under this category. Reductions in the number
of loads and stores, procedure cloning, loop unrolling,
procedure inlining, loop transformations, partial
redundancy elimination are a few examples.

Class B Optimizations
These optimizations benefit energy while having no impact
or a decrease in performance. Innovations in instruction
scheduling, register pipelining, innovations in code
selection to replace high power dissipating instructions
with other instructions are a few examples.

Class C Optimizations
These optimizations are the ones that are bad for power
dissipation and energy consumption. Typically the
optimizations that have a negative impact on performance
also have a negative impact on energy consumption.

5. Recommendations

5.1. To the Compiler Designer

Based on the results presented above it is clear that the
highest impact on energy consumption is by improving the
performance of the code. Using the current day
architectures the only optimizations for power that can be
done is scheduling register accesses so that the register file
switching is minimized and proper code selection and
aggressive but careful strength reduction to replace power
hogging instructions with other less power consuming
instructions.

5.2. To the Computer Architect

Based on the measurements above it is clear that with
current day architectures, novel compiler optimizations that
target power are few. However there are several
architectural innovations that can be exposed to the
compiler so that many more Class B optimizations are
facilitated. Examples would be a bit width sensitive ALU
that can derive hints from the compiler, compiler controlled
voltage and frequency scaling among other things.

6. Conclusion
In this paper, we explored the limits of a compiler in
optimizing for power for existing processor architectures.
Using a precise model of a popular embedded
microprocessor, supported by actual measurement on a
development board, experiments carefully crafted to test
specific aspects of the micro-architecture were performed.
Our study reveals that to a great extent compiler
optimizations for locality and performance translate to
optimizations for power. This is in agreement with other
similar studies. We have also identified a few opportunities
for novel optimizations such as reduction in register file
switching do exist. However, our experiments have shown
that in order to obtain substantial gains in energy saving,
innovating micro-architectural features and exposing them
to the compiler is necessary.

References
1. Marc A. Viredaz and Deborah A. Wallach, “Power

Evaluation of a Handheld Computer: A Case Study,”
Research Report 2001/1 Compaq Western Research
Lab.

2. Vivek Tiwari, Sharad Malik and Andrew Wolfe,
“Compilation Techniques for Low Energy: An
Overview,” In 1994 Symposium on Low-Power
Electronics, San Diego, CA, October 1994.

3. David Brooks, Vivek Tiwari and Margaret Martonosi,
“Wattch - A Framework for architectural-level power
analysis and optimizations,” In Proc. Of The 27th
Annual International Symposium on Computer
architecture, 2000, Pages 83 – 94.

4. Madhavi Valluri and Lizy John, “Is Compiling for
Performance == Compiling for Power?” The 5th
Annual Workshop on Interaction between Compilers
and Computer Architectures (INTERACT-5),
Monterrey, Mexico, January 20, 2001.

5. ARM Verilog Model,
http://www.eecs.umich.edu/~tnm/power/verilog_arm.h
tml, University of Michigan, Electrical Engineering
and Computer Science.

6. Trimaran, http://www.trimaran.org.

7. ARM Ltd., http://www.arm.com.

8. Synopsys Design Compiler,
http://www.synopsys.com/products/logic/design_comp
_ds.html .

9. Su, C., Tsui, C., and Despain, A. “Low Power
Architecture Design and Compilation Techniques for
High-Performance Processors”. In Digest of Papers:
Spring COMPCON 94, pp. 489--498, February 1994.

10. Steven S. Muchnick, Advanced Compiler Design and
Implementation. Morgan-Kaufmann Publishers. 1997.

