
System-on-a-Chip
Processor Synchronization

Support in Hardware

by

Bilge E. Saglam and Vincent J. Mooney

Georgia Institute of Technology
School of Electrical and Computer

Engineering

Background
Motivation
Methodology
l SoCSU Lock Cache Hardware Mechanism
l Software Support for SoCSU

Experimental Set-up
l Hardware and Software Architectures
l Database Example Simulation

Results
Conclusion

Outline

Background

Critical Section
l Code section where shared data between

multiple execution units is accessed
l E.g., multiple readers and multiple writers
l A lock is necessary to guarantee the

consistency of shared data (e.g., global
variables)

Lock Delay
l Time between release and acquisition of a lock

Lock Latency
l Time to acquire a lock in the absence of

contention

Atomic Locking
l Special load/store instructions

l ‘LL’ – load linked and ‘SC’ – store conditional
(MIPS)

l ‘lwarx’ and ‘stwcx.’ (MPC750)
l Paired instructions
l Breakable link for Effective Address (EA)

l Synchronization Primitives
l Test-and-Set, Compare-and-Swap, Fetch-and-

Increment primitives

Ensuring mutual exclusiveness and
consistency

Background (Continued)

Background (Continued)

test-and-set primitive

TRY: LL r2, (r1) ; load lock variable
ORI r3, r2, 1 ; set r3 = 1
BEQ r3, r2, TRY ; unlocked?
SC r3, (r1) ; try locking
BEQ r3, 0, TRY ; succeed?

…./* critical section here */….

ANDI r2, r2, 0 ; set r2 = 0
SW r2, (r1) ; unlock lock variable

Problem: busy-wait !

Motivation

Previous Software Solutions
l spin-on-test-and-set,spin-on-read, static/adaptive delay in

loops,queue algorithms (Anderson’90, etc.)

l poor in terms of bandwidth consumption, lock delay, lock
latency

l cache invalidations à hold cycles

Previous Hardware Solutions
l special cache schemes, each processor has a private

cache directory for locks (Ramachandran’96, etc.)

l dependent on memory hierarchy (special consistency
model)

Solution in hardware: SoCSU Lock
Cache
Deterministic and much faster
access to lock variables
Better performance in terms of lock
delay, lock latency and bandwidth
consumption
Higher scalability for multi-
processor SoC designs
RTOS support

Motivation (Continued)

Methodology

SoCSU Lock Cache Hardware
Mechanism

Memory

P1 PN

Decoder and
Arbitration Logic

SoCSU
Lock
Cache

P2

Methodology (Continued)
SoCSU Lock Cache Hardware

Interrupt Generation
l Programmable priority

assignment during
system reset

l Notify one processor at
a time à preventing
unnecessary signaling

l Priority or FIFO

Methodology (Continued)
SoCSU Lock Cache Hardware
Mechanism

Methodology
Software Example for SoCSU
Traditional code for spin-lock

C: Lock (lock variable);
…/*critical section*/…
UnLock (lock variable);

ASM:
try: LL R2,(R1) ;read the lock

ORI R3,R2,1
BEQ R3,R2,try ;spin if lock is busy
SC R3,(R1) ;acquire the lock
BEQ R3,0,try ;spin if store fails
…/*critical section*/…
SW R2, (R1) ;release lock

Methodology (Continued)
Software Example for SoCSU

New code with SoCSU Lock Cache HW support

C: Lock (lock variable);
…/*critical section*/…
UnLock (lock variable);

ASM:
try: LW R2,(R1) ;read the lock

BEQ R2,1,sleep ;succeed?
…/*critical section*/…
SW R2, (R1) ;release lock

SoCSU Lock Cache vs. Traditional
Implementation

P1 P2 P2
Task1 Task2 Task2

Lock(); Lock(); Lock();
Succeed Fail Fail

C.S. Sleep();
Unlock(); à Interrupt Contend

Lock(); Lock();
Succeed Succeed?

C.S. C.S.
Unlock(); Unlock();

SoCSU Traditional

Special load (LL) and store (SC) instructions
removed
Latency reduced
Assumption: only small critical sections

sleep instead of context switch
ISR enables the sleeping task to return back to
its original program flow

ISR: mflr %r0
mtspr %SRR0, %r0
rfi

No need to save context; high responsiveness

Methodology (Continued)
SoCSU Software Implementation

Experimental Set-up

Seamless Co-Verification Environment
(Seamless CVE)
Seamless processor support packages
for PPC family (we are using MPC750)
Instruction set simulators
Synopsys VCS verilog simulator
RTOS – using uC/OS-II

Experimental Set-up (Continued)

Database Example Simulation

Four MPC750 processors
Database example
application combined with
client/server pair execution
model
Thread-level synchronization
- each thread acquires a lock
- a transaction = accessing a

database (critical section)
- SoCSU provides synchronization

Database Example Simulation
(Continued) Server accesses to shared

memory object after
acquiring lock from SoCSU
Lock Cache
Server reads from its own
local memory into the shared
memory object
Server notifies client by
releasing the lock (interrupt
sent from SoCSU Lock
Cache)
Client acquires the lock and
copies the data from shared
memory into its own local
memory

Client ServerShared
Memory

Client
Local

Memory

Server
Local

Memory

Results
Simulation with 10 server tasks on one processor and 30
client tasks on the other 3 processors
Worst case experimental results for 4-processor
simulation (comparing SoCSU approach with the
traditional spin-lock method):

Total execution time à 27% speedup
Lock delay à 451 times, Lock latency à 4.8 times

10407141326311Total Execution
time (#clk cycles)

34.515578Lock Delay
(#clk cycles)

3.517Lock Latency
(#clk cycles)

SoCSU
Lock Cache

Spin-Lock

Conclusion & Future Work
A hardware mechanism for multi-processor SoC
Synchronization: SoCSU Lock Cache
Reduction in lock latency, lock delay
Constant traffic contention complexity
27% overall speedup in an example database
application

Note: patent pending

Future Work
l Support both long Critical Sections and short Critical

Sections
l Allow context-switching of tasks instead of sleeping
l RTOS modifications
l Hardware Modifications

