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Background 

Critical Section
l Code section where shared data between 

multiple execution units is accessed
l E.g., multiple readers and multiple writers
l A lock is necessary to guarantee the 

consistency of shared data (e.g., global 
variables)

Lock Delay
l Time between release and acquisition of a lock

Lock Latency
l Time to acquire a lock in the absence of 

contention



Atomic Locking 
l Special load/store instructions

l ‘LL’ – load linked and ‘SC’ – store conditional  
(MIPS)

l ‘lwarx’ and ‘stwcx.’  (MPC750)
l Paired instructions
l Breakable link for Effective Address (EA)

l Synchronization Primitives
l Test-and-Set, Compare-and-Swap, Fetch-and-

Increment primitives

Ensuring mutual exclusiveness and 
consistency

Background  (Continued)



Background  (Continued)

test-and-set primitive

TRY: LL       r2, (r1)     ; load lock variable
ORI     r3, r2, 1       ; set r3 = 1
BEQ    r3, r2, TRY ; unlocked?
SC       r3, (r1) ; try locking
BEQ    r3, 0, TRY ; succeed?

…./* critical section here */….

ANDI r2, r2, 0 ; set r2 = 0
SW r2, (r1) ; unlock lock variable

Problem: busy-wait !



Motivation

Previous Software Solutions
l spin-on-test-and-set,spin-on-read, static/adaptive delay in 

loops,queue algorithms (Anderson’90, etc.)

l poor in terms of bandwidth consumption, lock delay, lock 
latency

l cache invalidations à hold cycles

Previous Hardware Solutions
l special cache schemes, each processor has a private 

cache directory for locks (Ramachandran’96, etc.)

l dependent on memory hierarchy (special consistency 
model)



Solution in hardware: SoCSU Lock 
Cache
Deterministic and much faster 
access to lock variables
Better performance in terms of lock 
delay, lock latency and bandwidth 
consumption
Higher scalability for multi-
processor SoC designs
RTOS support

Motivation  (Continued)



Methodology

SoCSU Lock Cache Hardware 
Mechanism

Memory

P1 PN

Decoder and 
Arbitration Logic

SoCSU
Lock
Cache

P2



Methodology  (Continued)
SoCSU Lock Cache Hardware



Interrupt Generation
l Programmable priority 

assignment during 
system reset

l Notify one processor at 
a time à preventing 
unnecessary signaling

l Priority or FIFO

Methodology  (Continued)
SoCSU Lock Cache Hardware 
Mechanism



Methodology
Software Example for SoCSU 
Traditional code for spin-lock

C: Lock (  lock variable );
…/*critical section*/…
UnLock ( lock variable );

ASM:
try:  LL   R2,(R1)     ;read the lock

ORI  R3,R2,1
BEQ  R3,R2,try ;spin if lock is busy
SC   R3,(R1)       ;acquire the lock
BEQ  R3,0,try ;spin if store fails
…/*critical section*/…
SW   R2, (R1)     ;release lock



Methodology (Continued)
Software Example for SoCSU 

New code with SoCSU Lock Cache HW support

C: Lock ( lock variable );
…/*critical section*/…
UnLock ( lock variable );

ASM:
try:  LW   R2,(R1)     ;read the lock

BEQ  R2,1,sleep  ;succeed?
…/*critical section*/…
SW   R2, (R1)    ;release lock



SoCSU Lock Cache vs. Traditional 
Implementation 

P1 P2                 P2
Task1 Task2           Task2

Lock();          Lock();           Lock();
Succeed         Fail               Fail

C.S.            Sleep(); 
Unlock(); à Interrupt      Contend 

Lock();          Lock();
Succeed      Succeed?

C.S.                C.S.
Unlock();       Unlock();

SoCSU       Traditional



Special load (LL) and store (SC) instructions 
removed
Latency reduced
Assumption: only small critical sections

sleep instead of context switch
ISR enables the sleeping task to return back to 
its original program flow

ISR: mflr   %r0
mtspr  %SRR0, %r0
rfi

No need to save context; high responsiveness

Methodology (Continued)
SoCSU Software Implementation



Experimental Set-up

Seamless Co-Verification Environment 
(Seamless CVE)
Seamless processor support packages 
for PPC family (we are using MPC750)
Instruction set simulators
Synopsys VCS verilog simulator
RTOS – using uC/OS-II



Experimental Set-up (Continued)

Database Example Simulation

Four MPC750 processors
Database example 
application combined with 
client/server pair execution 
model
Thread-level synchronization
- each thread acquires a lock 
- a transaction = accessing a 

database (critical section)
- SoCSU provides synchronization 



Database Example Simulation 
(Continued) Server accesses to shared 

memory object after 
acquiring lock from SoCSU 
Lock Cache 
Server reads from its own 
local memory into the shared 
memory object
Server notifies client by 
releasing the lock (interrupt 
sent from SoCSU Lock 
Cache)
Client acquires the lock and 
copies the data from shared 
memory into its own local 
memory

Client ServerShared 
Memory

Client
Local

Memory

Server
Local

Memory



Results
Simulation with 10 server tasks on one processor and 30 
client tasks on the other 3 processors
Worst case experimental results for 4-processor 
simulation (comparing SoCSU approach with the 
traditional spin-lock method):

Total execution time à 27% speedup
Lock delay à 451 times, Lock latency à 4.8 times

10407141326311Total Execution 
time (#clk cycles)

34.515578Lock Delay
(#clk cycles)

3.517Lock Latency 
(#clk cycles)

SoCSU
Lock Cache

Spin-Lock



Conclusion & Future Work
A hardware mechanism for multi-processor SoC
Synchronization: SoCSU Lock Cache
Reduction in lock latency, lock delay
Constant traffic contention complexity
27% overall speedup in an example database 
application

Note: patent pending

Future Work
l Support both long Critical Sections and short Critical 

Sections
l Allow context-switching of tasks instead of sleeping
l RTOS modifications
l Hardware Modifications


