
Hardware Support for Priority Inheritance

Bilge E. S. Akgul, Vincent J. Mooney III, Henrik Thane∗, Pramote Kuacharoen

Center for Research on Embedded Systems and Technology
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

{bilge, mooney, pramote}@ece.gatech.edu
∗Malardalen Real-Time Research Center

Department of Computer Science and Engineering
Malardalen University, Vasteras, Sweden

henrik.thane@mdh.se

Abstract

Previous work has shown that a system-on-a-chip lock
cache (SoCLC) reduces on-chip memory traffic, provides
a fair and fast lock hand-off, simplifies software, in-
creases the real-time predictability of the system and im-
proves performance. In this research work, we extend
the SoCLC mechanism with a priority inheritance sup-
port implemented in hardware. Priority inheritance pro-
vides a higher level of real-time guarantees for synchro-
nizing application tasks. Experimental results indicate that
our SoCLC hardware mechanism with priority inheritance
achieves a 36% speedup in lock delay, 88% speedup in lock
latency and 15% speedup in the overall execution time when
compared to its software counterpart. The cost in terms of
additional hardware area for the SoCLC with priority in-
heritance is approximately 10,000 NAND2 gates.

1. Introduction

Synchronization has always been a fundamental problem
in multiprocessor systems. As multiprocessors run multi-
tasking application software with a real-time operating sys-
tem (RTOS), important shared data structures, also called
critical sections (CS), are accessed for inter-process com-
munication and synchronization events occurring among
the tasks/processors in the system.

Typically, the consistency of a CS can be maintained by
allowing only one process at an instance to operate on the
CS. This can be provided with the use of a lock variable: a
task waiting to enter into a CS first has to acquire the corre-

sponding lock; only then should the task enter the CS. The
lock holder task releases the lock after completing its execu-
tion in the CS; thus, other tasks are prevented from entering
the same CS at the same time as the lock holder task. On
the other hand, given the limited communication resources
(e.g., memory bus), the locks may easily become a bottle-
neck of the system: tasks spin on the memory bus for the
lock, i.e., busy-wait, until the lock is released. During this
busy-wait time, the amount of useful work is degraded. For
a cache-coherent system, on the other hand, spinning on the
memory bus causes unnecessary cache invalidations and in-
creased coherency traffic due to ping-pong effects, hot-spot
and false sharing problems [1], [2], [3]. Even worse, the
lock owner contends with the other spinning processors for
the memory bus and hence the time that the lock owner re-
leases the lock is further delayed, which causes additional
unpredictable stalls in the system.

1.1. Priority inversion

Task scheduling involves additional concerns due to the
fact that tasks share resources. In a parallel system with
a preemptive RTOS, the consistency of shared data by use
of a lock variable is maintained at a cost of serialized ac-
cesses to the shared resources (i.e., no more than one task
can have access to a shared resource at a particular point
in time). This may lead to the following priority inversion
situation [4], [5], [6]. A low priority task may have started
accessing some shared data – thus obtaining the lock for
that shared data – just before a high priority task attempts to
access the same shared data, in which case the high priority
task is forced to wait for the low priority task. Even worse,

there might a middle priority task that preempts the low
priority task before the low priority task releases the lock,
causing unpredictable and unacceptable delays for the high
priority task.

The priority inversion problem is unavoidable whenever
lock-based synchronization (i.e., mutual exclusion) is used
to maintain consistency; however, it is possible to bound the
waiting time and thereby avoid unpredictable delays. Previ-
ous work has addressed the priority inversion problem and
proposed the priority inheritance solution with priority in-
heritance protocols for uniprocessor systems [4] and mul-
tiprocessor systems [5], [6]. The proposed priority ceiling
protocols in [5] and [6] avoid unbounded blocking and pre-
vent deadlocks.

In this paper, we present a solution to the priority in-
version problem in the context of a multiprocessor SoC by
integrating a priority inheritance protocol, specifically the
immediate priority ceiling protocol (IPCP) [4], [7], [8], im-
plemented in hardware. Our approach prevents deadlocks,
unbounded blockings and chained blockings. Our approach
also provides higher performance and better predictability
for real-time applications running on an SoC. The IPCP is
integrated with the system-on-a-chip lock cache (SoCLC),
which is a specialized custom hardware unit realizing ef-
fective lock-based synchronization for a multiprocessor
shared-memory SoC [9], [10], [11], [12].

In the next section, we summarize the SoCLC hardware
mechanism.

1.2. SoCLC: System-on-a-Chip Lock Cache

To address synchronization problems, the SoCLC has
been implemented in previous work. SoCLC is a simple
hardware unit that can easily be integrated to an SoC as
an intellectual property (IP) core via the system bus (Fig-
ure 1) and has been shown to achieve speedups of 55%
and 27% in realistic examples at a very small (< 13,000
gates) hardware cost [9], [10], [11], [12]. Note that the
SoCLC mechanism has been implemented with a preemp-
tive RTOS, handling both non-blocking (e.g., traditional
spin-lock mechanism) and blocking (e.g., semaphores with
preemptive RTOS) synchronization.

1.3. RTOS support for the SoCLC

The SoCLC supports two types of locks: short CS locks
and long CS locks [11]. For the short CS locks, because
the duration of the CS is small and it is very likely that the
lock owner will release the lock soon, the SoCLC mecha-
nism applies a non-blocking synchronization construct. As
such, the lock requester task is not preempted until after the
requester task is granted the lock and is done with its short
CS execution. Also note that the lock owner task is not pre-

PE1 PE2 PEn

…

SoC
Lock
Cache

Memory
Arbiter/
Memory

Controller

Figure 1. SoCLC connected to the system
bus. (PE: Processing Element.)

empted until after it completes the short CS and releases
the lock. In this way, it is impossible for a context switch
to occur to a lock owner task during the time that the task
holds the short CS lock; furthermore, it is impossible for
a context switch to occur to a lock requester task from the
time that the task requests the lock until the task is granted
the lock. This, of course, requires support of the software
RTOS managing the lock requests to the SoCLC hardware.

However, if the CS duration is long enough to compen-
sate for the context switch time, then it is more advanta-
geous to apply a blocking construct to the lock. Therefore,
in the case of a long CS, a task waiting for a long CS lock
is allowed to be preempted so as to yield the processor to
other tasks. Thus, by allowing a task waiting for a long CS
lock to be preempted, the other tasks able to use the CPU
resources can be scheduled to do useful work.

Therefore, SoCLC has been implemented to support
both short and long CSes and it is programmer s decision
where to use which type of lock in his/her application. In or-
der to realize the preemptive functionality of the long CSes,
the lock cache mechanism has been integrated with the
Atalanta-RTOS, a multiprocessor, preemptive RTOS with
a priority based scheduler [13], [11].

2. Background

2.1. Priority inversion problem

In the case of long CSes, where tasks unable to acquire
a long CS lock may be preempted, the priority inversion
problem may occur. Priority inversion occurs when a higher
priority task has to wait for a lower priority task and this
waiting time is unbounded, i.e., unpredictable. For exam-
ple, if a low priority task owns a long CS lock before a high
priority task attempts to acquire the lock, the high priority

task is blocked. In such a condition, an unbounded block-
ing for the high priority task may occur if middle priority
task(s) arrive(s) and preempt(s) the low priority task before
the low priority task releases the lock on which the high
priority task is blocked (see Figure 2). In other words, the
high priority task is deprived of the CPU resources for the
execution time of the critical section(s) run by middle pri-
ority task(s) plus the execution time of the critical section
run by the low priority task; this has the practical impact of
altering the de facto task priorities at run time, disturbing
the real-time system behavior.

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

low
priority

task

high
priority

task

middle
priority

task

task
arrival

task
arrival

task
arrival

CS

Figure 2. Priority inversion problem.

2.2. Solution: priority inheritance

The priority inversion causing unpredictable delays can
be avoided by a priority inheritance protocol. As introduced
in [4], the basic PIP prevents unbounded blocking of higher
priority tasks due to lower priority tasks. In the basic PIP
(see Figure 3), if a lower priority task blocks a higher pri-
ority task, then this lower priority task executes its critical
section with the priority level of the higher priority task that
it blocks. As such, the lower priority task inherits the prior-
ity of the higher priority task (that is blocked by the lower
priority task). In the PIP, the maximum blocking time (due
to a lower priority task) is equal to the length of one CS and
the blocking can occur at most once for each lock.

In PIP, the high priority tasks may still suffer from
chained blocking. Chained blocking is the condition in
which a high priority task is blocked for more than one lock
due to more than one lower priority task, as described in [4].
Chained blocking causes extra context switching overheads.
To remedy this problem, the basic PIP has been extended
to the original priority ceiling protocol (OPCP) which pre-
vents both priority inversion and chained blocking [5], [4].
In OPCP, each CS is assigned a ceiling priority which is
equal to the priority of the highest priority task that can ever
lock the CS. A task is allowed to enter into a CS only if
its dynamic priority is higher than the priority ceiling of the

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

low
priority

task

high
priority

task

middle
priority

task

task
arrival

task
arrival

task
arrival

CS

Figure 3. Priority inheritance protocol (PIP)
prevents unbounded blocking.

CS. As such, OPCP guarantees that a task can be blocked
for at most the duration of a CS for at most once.

In OPCP, however, the blocking relationships are tracked
in the RTOS, which constitutes an overhead in the imple-
mentation. An immediate priority ceiling protocol (IPCP),
on the other hand, provides a much easier implementation
and still guarantees prevention of chained blocking [4], [8].
As soon as a lock is granted to a task, the task’s dynamic
priority is immediately raised to the ceiling priority of the
CS (unlike the OPCP which does not raise the task’s priority
unless the task actually blocks a higher priority task). More-
over, in IPCP, there are potentially fewer context switches,
because IPCP requires less preemptions to occur. This fea-
ture of IPCP is also advantageous in allocation of stacks for
the task-preemption events, that is, the number of stacks re-
quired can be specified initially – during system analysis
before start-up – at a lower cost (in terms of the stack mem-
ory space) [7]. Note that the IPCP mechanism has been
applied to POSIX [14], Ada [15] and Real-Time Java.

In our hardware implementation of the priority inheri-
tance, we use the IPCP approach because of its advantages
listed above.

3. Methodology: priority inheritance in hard-
ware

In this section, we present the hardware implementation
of priority inheritance and qualitative comparisons with its
software counterpart implemented as part of the Atalanta-
RTOS [13]. (Section 4 contains quantitative comparisons.)

3.1. Atalanta-RTOS priority inheritance vs.
SoCLC priority inheritance

Atalanta-RTOS supports the basic priority inheritance
protocol. The specific functions provided within the RTOS

Figure 4. Flow charts of locking operation for (a) Atalanta-RTOS priority inheritance mechanism,
(b) SoCLC priority inheritance mechanism.

manage the tasks’ priority levels. If a high priority task is
blocked on a CS due to a lower priority task, then the high
priority task will be removed from the ready-list of tasks
and its task-structure will be updated with the correspond-
ing lock id. (The lock id is used by the RTOS lateer to
change the priority of the task that inherits the priority of
a higher priority task.) Then the high priority task will be
inserted to the waiting-list for the specific CS on which it
is blocked. Next, a call to another function is performed to
raise the dynamic priority of the lower priority task up to
the priority level of the high priority task. This requires the
ready-list to be re-adjusted according to the newly assigned
dynamic priorities. Finally, the scheduler is called to con-
text switch to the task that is at the head of the ready-list.
Figure 4(a) depicts the abovementioned algorithmic flow of
operations performed within the Atalanta-RTOS.

In our hardware implementation of the priority inheri-
tance, on the other hand, the priority movements are man-
aged by the SoCLC – in hardware. Therefore, unlike the
Atalanta-RTOS, we do not require a task removal/insertion
operation from/into a list of tasks waiting for a CS. Further-
more, there is no re-adjustment of the ready-list every time a
change in the task priority-levels is performed. Figure 4(b)
depicts the algorithmic flow of operations performed in the
RTOS with the support of the SoCLC hardware.

In case of the Atalanta-RTOS priority inheritance mech-
anism, the task removal/insertion operations performed on

the waiting-list of tasks lead to another drawback. These
lists are a linked list of tasks that are waiting for a CS and
the number of tasks in a list affects the removal/insertion
operations. For example, upon a task removal, the cor-
responding search time/computation-effort will increase as
the number of tasks in the list is increased. For the SoCLC
case, on the other hand, no matter what the number of tasks
are, the hardware can manage the tasks states and update
the priorities of the tasks in a fixed number of clock cycles.
This feature of our hardware implementation not only pro-
vides higher performance but also improves predictability.
Therefore, our hardware approach can help to seize a better
optimality in the analysis of worst-case execution time.

3.2. Priority inheritance hardware architecture

Figure 5 illustrates the basic components of the hard-
ware: status board, priority encoder, interrupt generator and
task-wakeup register. The status board holds the state of
each lock variable (whether a lock is free or not), informa-
tion about which tasks are blocked waiting for each lock,
the static priority of the current lock-owner-task for each
lock, the ceiling priority of each lock and the dynamic task
priority of each task. The lock, the owner, each dynamic
task priority and the task-wakeup register can be accessed
by each processing element (PE). Note that Figure 5 shows
a hardware configuration for a 64-task RTOS and an SoCLC

tasks' states 1

tasks' states 2

tasks' states 3

tasks' states N

lock

lock

lock

lock

owner 1

owner 2

owner 3

owner N

ceiling 1

ceiling 2

ceiling 3

ceiling N

task1

1 bit...

64 bit...

6 bit...

6 bit...

6 bit

...

Lock
variables Blocked tasks

 Static
priority of
lock owner

Dynamic
task priority

 Ceiling
value of

locks

Priority
Encoder

Interrupt
Generator

Interrupts
to PEs

Task-wakeup
Register

Output Data

 Status Board

dyn. priority task1

2

3

N

1

dyn. priority task 2

dyn. priority task 3

dyn. priority task 64

Figure 5. Priority inheritance hardware components in the SoCLC.

supporting N lock variables.
To acquire a lock locki, a task taskj running on a pro-

cessor PEk first accesses the SoCLC by reading the corre-
sponding locki bit value from the status board. If the locki

value is ‘0’, taskj becomes the owner of locki. Therefore,
taskj’s static priority is written into the owneri position
and its dynamic priority in the “dynamic priority of tasks”
column of the status board is updated to the value ceilingi.
As such, the priority of taskj has been raised to ceilingi,
which implies that the lock owner task, taskj , has inher-
ited the priority of the highest priority task that will ever
acquire locki. If another task taskj+1 running on a proces-
sor PEk+1 also wants to acquire locki, since locki is not
free anymore (it is held by taskj), taskj+1 fails to acquire
the lock and its bit location (j+1) in the “tasks’ states” po-
sition of locki is set to a ‘1’ – indicating that taskj+1 is
waiting for locki. When taskj releases locki, if taskj+1

is the only task waiting for locki, then taskj+1’s processor,
PEk+1 receives an interrupt from the SoCLC and the inter-
rupt handler re-schedules taskj+1 on the processor PEk+1.
Note that if more than one task is waiting for the same lock,
then the priority encoder selects the highest priority task,
say taskh, so that the SoCLC sends an interrupt to the pro-
cessor that runs taskh. Example 3.1 explains the hardware
and software operations occurring for our SoCLC approach
with a sample scenario.

Example 3.1 Assume that initially task42 is the owner of
lock3 and the static priority of task42 is 42. Moreover, task20

and task35 are waiting for the same lock, lock3, and their
static priorities are 20 and 35, respectively. Also assume
that the highest priority task that will ever acquire lock3 is
task11 and task11’s priority is 11, which implies that the ceil-
ing value of lock3 is also 11. The status board state that

captures the corresponding state information is illustrated in
Figure 6(a). Notice from the figure that the dynamic prior-
ity of task42 is 11, which implies that task42’s priority has
been raised to the ceiling priority. Now, assume that task42

releases the lock. Because of the fact that task20 is the high-
est priority task among all the tasks that are waiting for lock3,
the priority encoder selects task20 and task20 is entered into
the “Task-wakeup register” (see Figure 5). Next, an inter-
rupt is sent to the processor of task20, say PE2. As PE2

receives the interrupt, it accesses the “Task-wakeup regis-

1 42 11

...

Lock
variables Blocked tasks

 Static
priority of
lock owner

Dynamic
task priority

 Ceiling
value of

locks

 1... 0 0 1

1 20 35

...

64

1

2

3

N

1 20 11

...

......

 0... 0 0 1

... 11

1

2

3

N

1

20

64
63

(a) Initial state

(b) Final state

...

 42 42

...
......

 20

1

20

64
63

...

 11 42

...

1 20 35 64

Figure 6. Status board corresponding to the
(a) initial and (b) final states as described in
Example 3.1.

ter” to learn which task – task20 in this case – to wakeup.
Finally, PE2 reschedules task20 so that task20 enters into
the CS protected by lock3. The corresponding state of the
status board at this point is illustrated in Figure 6(b). 2

Our implementation also has benefits for tasks sharing
CSes on the same processor. The next example illustrates
this fact.

Example 3.2 Assume that a low priority task, task9, a mid-
dle priority task, task8, and a high priority task, task7 run on
the same PE. To be specific, task9 has priority 9, task8 has
priority 8 and task7 has the highest priority, priority 7. The
three tasks share two CSes guarded by two locks, lock1 and
lock2. In such a case, the ceiling priority of both locks will
be 7, which is the priority of the highest priority task that can
acquire the locks. Suppose that task9 accesses the first CS
and hence is the owner of lock1. Also assume that task8

becomes ready and will request lock2. Because of the fact
that IPCP raises the priority of task9 to the ceiling priority of
lock1, even if task8 becomes ready, task8 cannot preempt
task9. In this case, a possible blocking of the highest priority
task, task7, should task7 become ready and request lock1

after task8 requests lock2, would be avoided. Also, extra
context switches due to preemptions (task9 preemption by
task8 and task8 preemption by task7) would be prevented.
2

4. Experimental results

This section presents the performance speedups obtained
by SoCLC priority inheritance implemented in hardware
when compared to Atalanta-RTOS priority inheritance im-
plemented in software. As for the experimental setup, the
SoCLC has been integrated with Motorola PowerPC750
(MPC750) processors in the Seamless CVE tool from Men-
tor Graphics [16] with instruction set simulators (used for
software debugging and execution trace) and with the hard-
ware verilog simulator VCS from Synopsys [17]. The spec-
ifications of the MPC750 processor that we used in our
experiments are listed in Table 1. Please note that we as-
sume 3 cycles of the system bus clock are needed to ac-
cess one word in the 16 MB global memory. The Atalanta-
RTOS [13] with the application programs are installed on
each processor.

Figure 7 depicts the two hardware/software architec-
tures that we compare. The first architecture, as seen in
Figure 7(a), comprises four MPC750 processors in hard-
ware and the user-level application tasks plus the Atalanta-
RTOS in software. The Atalanta-RTOS version used in-
cludes the priority inheritance protocol and the spin-lock
mechanism for lock-based synchronization of long CSes
and short CSes, respectively. The second architecture in
Figure 7(b), on the other hand, comprises four MPC750

System Bus Clock Freq. 100 MHz
MPC750 Internal Clock Freq. 300 MHz

Data Cache Size 0 kB
Instruction Cache Size 32 kB

Global Shared Memory Size 16 MB

Table 1. Specifications of MPC750 that we
used in our experiments.

processors plus the SoCLC in hardware and the user-level
application tasks plus the Atalanta-RTOS in software. How-
ever, the Atalanta-RTOS of the second architecture does
not include the priority inheritance protocol nor the spin-
lock mechanism. Rather, the priority inheritance protocol
(which is part of the lock-based long CS synchronization)
and the lock-based short CS synchronization facility are im-
plemented as part of the SoCLC in hardware.

The tasks that we simulated in our experimental setups
represent a robot control (RC) application and an MPEG
decoder. Figure 8 illustrates the algorithmic model of the
RC application.

The first task detects the obstacles over the path via a
sensor operation and then computes the coordinates of the
next path to be taken by the robot to avoid a collision with
the obstacle. As seen from the figure, Object Recognition
and Avoid Obstacle parts of the model have been assigned
to task1, which is the highest priority task with critical
hard real-time requirements. The worst case response time
(WCRT) of task1 is 450µs; missing the deadline of task1

causes instability in the sensor function and tracking to fail.
Also seen in the figure, task2 handles the movement of the
robot according to the position information already deter-
mined by task1. Task2 is the second highest priority task
with firm real-time requirements and has a response time of
600µs. Missing the deadline of task2 causes the speed of
the robot to decrease and/or gouging or breakage. Task3

and task4, on the other hand, have relatively soft timing re-
quirements and are responsible for the robot trajectory dis-
play and recording. The WCRT of task3 and task4 are
600µs and 1500µs, respectively. Finally, the MPEG de-
coder task, task5, is the lowest priority task in the system
and has a soft timing requirement.

In our simulations, we ran these five tasks as follows:
task1 runs on CPU1 and it has a priority of 1 (highest pri-
ority task), task2 is the second priority task with priority 2
and it runs on CPU2, task3 also runs on CPU2 with priority
3, task4 runs on CPU3 and task5 runs on CPU4. Figure 9
shows the execution traces of task1, task2 and task3. As
seen in the figure, during the time that task1 is waiting for
task3 to release the lock, task1 (highest priority task) is
prevented from having unbounded blocking. Because, with
the IPCP, task3’s priority is raised to the ceiling priority im-

MPC750 MPC750 MPC750 MPC750

 Atalanta-RTOS
 priority inheritance

protocol

Application Tasks

spin-lock

MPC750 MPC750 MPC750 MPC750

 Atalanta-RTOS

Application Tasks

Interrupt
Handler

SoCLC

(a) (b)

 16 MB Global Shared Memory 16 MB Global Shared Memory

Figure 7. Hardware/software architectures used in our experiments. a) Atalanta-RTOS handles the
priority inheritance and the spin-lock mechanisms in software. b) SoCLC handles the priority inher-
itance and lock-based synchronization in hardware.

mediately after acquiring the lock. Therefore, when task2

(whose priority is higher than task3) arrives, task2 cannot
preempt task3, so task3 runs on CPU2 until task3 com-
pletes the CS and releases the lock.

We measured the lock latency, lock delay and overall
execution times for both architectures shown in Figure 7.
Before presenting the results of our measurements, we first
define lock latency and lock delay.

Definition 4.1 Lock Latency. The time required for a PE to
acquire a lock in the absence of contention. 2

Definition 4.2 Lock Delay. The time between when a lock
is released and when the next waiting PE acquires the lock.
2

The first architecture is named as the “Without SoCLC”
case and the second architecture is named as the “With
SoCLC” case. As seen from Table 2, the priority inheritance
implemented as part of the SoCLC hardware achieves 88%
speedup 1 (i.e., 1.88X) in the lock latency, 36% speedup
(i.e., 1.36X) in the lock delay and 15% speedup (i.e., 1.15X)
in the overall execution time when compared to the priority
inheritance implementation under Atalanta-RTOS.

We also analyzed the execution traces of all the five tasks
that we ran. As seen from Table 3, in the case of “With
SoCLC” simulation, all tasks meet their deadlines; whereas
in the case of “Without SoCLC,” task1 and task2 miss their
deadlines, which causes the tracking to fail and entails a
restart of the RC application.

Note that we performed a comparison with the software
implementation of priority inheritance but not with a sys-
tem including an additional processor dedicated to run the

1Please see [18] for the definition of speedup that we used in our cal-
culations.

Without With
SoCLC SoCLC Speedup

Lock Latency
(time in clock cycles) 1,462 776 x 1.88

Lock Delay
(time in clk cycles) 17,425 12,853 x 1.36
Overall Execution

(time in clk cycles) 128,079 111,444 x 1.15

Table 2. Simulation results.

Task1 Task2 Task3 Task4

WCRT 450µs 600µs 600µs 1500µs
Completion Time for
Without SoCLC Case 510µs 710µs 210µs 740µs
Completion Time for

With SoCLC Case 140µs 580µs 170µs 1110µs

Table 3. Task worst-case response times
(WCRT) and actual completion times.

priority inheritance protocol. An additional MPC750 pro-
cessor would impose extra processor-to-processor commu-
nication overheads plus a higher hardware cost, as the ad-
ditional processor would occupy a larger chip area than our
priority inheritance hardware logic (see Section 5). How-
ever, one could consider using a microcontroller or other
small processor in place of custom SoCLC hardware, but
we would expect the speedups shown to be much smaller in
such a scenario.

We also did not attempt to change the memory architec-

Number of short CS long CS total number SoCLC with IPCP SoCLC without IPCP IPCP hardware
processors locks locks of locks logic area logic area logic area

4 16 16 32 5578 1694 3884
4 16 32 48 8690 2071 6619
4 32 32 64 8957 2329 6628
4 32 64 96 15263 3323 11940
4 64 64 128 15785 3740 12045

Table 4. SoCLC hardware synthesis results.

Start

Object_Recognition

Avoid_Obstacle

Reached target? End

Move

no

yes

Display
Robot_Trajectory

Record_Data

task1

task2

task3

task4

Figure 8. Robot application model and job-
partitioning among tasks.

ture of the system. For example, using a two-port memory
would not help in reducing the lock contention due to the
fact that the lock address specifies a unique physical mem-
ory location. This implies that multiple ports would still
contend with each other to access the lock from that unique
physical location. Moreover, altering the memory/bus sys-
tem of an SoC requires all the system components to com-
ply with newly designed memory/bus system.

5. Synthesis results

This section presents the synthesis results of the SoCLC.
The Design Compiler from Synopsys [19] with a 0.25µ

technology TSMC standard cell library from LEDA [20]
has been used for the synthesis of the SoCLC.

Table 4 shows the area occupied by the SoCLC with and

lock
request

lock
grant

lock
request

blocking

lock
release

lock
grant

CS

CS

lock
latency

CPU 2
task

CPU 1
task

CPU 2
task

task
arrival

task
arrival

task
arrival

1

3

2

2

3

1

Figure 9. Task3 inherits task1’s priority during
the time that task3 executes its CS. After com-
pleting its CS, task3 yields the CPU2 to task2.

without the priority inheritance hardware for different hard-
ware for different combinations/numbers of locks in terms
of the area of a two-input NAND gate. As an example, for a
four-processor SoC, the priority inheritance hardware sup-
porting 32 short CS locks and 32 long CS locks occupies
6628 gates of area.

6. Conclusion

Our contribution with this paper is the priority inheri-
tance (with immediate priority ceiling protocol) implemen-
tation which is employed into the SoCLC mechanism in
hardware. Our implementation improves the performance
of the system, prevents unbounded blockings, chained
blockings and deadlocks. Furthermore, our implementa-
tion is ported used custom APIs to the Atalanta-RTOS;
therefore, from the application programmer’s perspective,
our custom SoCLC with priority inheritance looks like any
other RTOS component.

We compared our approach with the software version of
priority inheritance provided as part of the Atalanta-RTOS.
Experimental results show that with a candidate sample sce-
nario SoCLC hardware achieves 36% speedup in lock delay,
88% speedup in lock latency and 15% speedup in the over-
all execution time.

For our future work we plan to use shared-memory cache
coherency protocols and thus use 32 kB data cache in our
simulations. Another future work is to evaluate the perfor-
mance of our approach when compared to that of a micro-
controller running priority inheritance in software.

7. Acknowledgements

This research is funded by the State of Georgia under
the Yamacrawinitiative (www.yamacraw.org)and the Geor-
gia Electronic Design Center (GEDC). Additional funding
was provided by NSF under INT-9973120, CCR-9984808
and CCR-0082164. We acknowledge donations received
from Denali, Hewlett-Packard Company, Intel Corporation,
LEDA, Mentor Graphics Corp., SUN Microsystems and
Synopsys, Inc.

References

[1] M. Dubois, C. Scheurich, and F. A. Briggs, “Syn-
chronization, coherence, and event ordering in multi-
processor,” IEEE Computer, vol. 21, no. 2, pp. 9–21,
February 1988.

[2] G. F. Pfister and V. A. Norton, “Hot spot con-
tention and combining in multistage interconnection
networks,” IEEE Transactions on Computers, vol. 34,
no. 10, pp. 943–948, October 1985.

[3] S. J. Eggers and T. E. Jeremiassen, “Eliminating false
sharing,” International Conference on Parallel Pro-
cessing, vol. I, pp. 377–381, August 1991.

[4] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority
inheritance protocols: An approach to real-time syn-
chronization,” IEEE Transactions on Computers, vol.
39, no. 9, pp. 1175–1185, September 1990.

[5] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-
time synchronization protocols for multiprocessors,”
Real Time Systems Symposium, pp. 259–269, Decem-
ber 1988.

[6] C. Chen and S. K. Tripathi, “Multiprocessor priority
ceiling based protocols,” Tech. Rep. CS-TR-3252, De-
partment of Computer Science, University of Mary-
land, April 1994.

[7] T. P. Baker, “Stack-based scheduling of realtime pro-
cesses,” The Journal of Real-Time Systems, vol. 3, pp.
67–100, 1991.

[8] M. H. Klein and T. Ralya, “An analysis of in-
put/output paradigms for real-time systems,” Tech.
Rep. CMU/SEI-90-TR-19, Software Engineering In-
stitute, Carnegie Mellon University, 1990.

[9] B. E. S. Akgul and V. J. Mooney, “System-on-a-chip
processor synchronization support in hardware,” De-
sign Automation and Test in Europe (DATE’01) , pp.
633–639, March 2001.

[10] B. E. S. Akgul, J. Lee, and V. J. Mooney, “A system-
on-a-chip lock cache with task preemption support,”
Proceedings of the International Conference on Com-
pilers, Architecture and Synthesis for Embedded Sys-
tems (CASES’01), pp. 149–157, November 2001.

[11] B. E. S. Akgul and V. J. Mooney, “The system-on-
a-chip lock cache,” International Journal of Design
Automation for Embedded Systems, vol. 7, no. 1-2, pp.
139–174, September 2002.

[12] B. E. S. Akgul and V. J. Mooney, “PARLAK:
Parametrized lock cache generator,” Design Automa-
tion and Test in Europe (DATE’03), pp. 1138–1139,
March 2003.

[13] S. Di-Shi, D. Blough, and V. J. Mooney, “Ata-
lanta: a new multiprocessor RTOS kernel for system-
on-a-chip applications,” Tech. Rep. GIT-CC-02-19,
Georgia Institute of Technology, College of Com-
puting, Atlanta, GA, March 2002. Available at:
http://www.cc.gatech.edu/tech reports/ .

[14] M. G. Harbour, “Real-time POSIX: an overview,”
VVConex 93 International Conference, Moscu, June
1993.

[15] Y. Kwok-bun, S. Davari, and T. Leibfried, “Priority
ceiling protocol in ada,” Conference Proceedings on
Disciplined Software Development with Ada, vol. 3,
no. 9, pp. 3–9, December 1996.

[16] Mentor Graphics. Hardware/Software Co-
Verification: Seamless. Available at:
http://www.mentor.com/seamless/.

[17] Synopsys VCS Verilog Simulator. Available at:
http://www.synopsys.com/products/simulation/simu-
lation.html.

[18] J. L. Hennessy and D. A. Patterson, Computer Archi-
tecture: A Quantitative Approach, Morgan Kaufmann,
Second edition, 1996, pp. 29–31.

[19] Synopsys Design Compiler. Available at:
http://www.synopsys.com/products/logic/design com-
piler.html.

[20] LEDA Systems, Inc. Available at:
http://www.ledasys.com/.

