
PARLAK: Parametrized Lock Cache Generator
Bilge E. S. Akgul and Vincent J. Mooney

School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
{bilge, mooney}@ece.gatech.edu

Abstract

A system-on-chip lock cache (SoCLC) is an intellectual prop-
erty (IP) core that provides effective lock synchronization in
a heterogeneous multiprocessor shared-memory system-on-a-
chip (SoC). We present PARLAK, a parametrized lock cache
generator tool. PARLAK generates a synthesizable SoCLC ar-
chitecture with a user specified number of lock variables and
user specified number and type(s) of processor(s). PARLAK
can generate a full range of customized SoCLCs, from a ver-
sion for two processors with 32 lock variables occupying 1,790
gates of area to a version for 14 processors with 256 lock vari-
ables occupying 37,380 gates of area (in TSMC 0.25µ technol-
ogy). PARLAK is an important contribution to IP-generator
tools for both custom and reconfigurable SoC designs.

1. Introduction
The SoCLC has been shown to achieve speedups of 55%

and 27% in realistic examples when compared to the traditional
spin-lock mechanism at a very small (< 13,000 gates) hardware
cost [1], [2], [3]. However, it is also desired to be able to cus-
tomize/configure and parameterize (according to the customer
specifications) the SoCLC with the minimum engineering ef-
fort possible in an automated fashion. One approach to solve
these demands can be referred to as an IP-generator tool. In this
context, we present PARLAK, parametrized lock cache gener-
ator, that generates a custom SoCLC for an SoC including re-
configurable and/or custom logic and multiple heterogeneous
processors such as in Figure 1.

Reconfigurable
Logic

Memory Controller
and

Address Decoder

SoCLC

Shared
Memory

DSP 1

DSP 2

uP 1

uP 2

Figure 1: A typical target SoC architecture for which PARLAK
can be used to reconfigure SoCLC for four processing elements.

2. Lock Cache Generator
2.1. PARLAK

The output of PARLAK is the specified SoCLC architec-
ture in Verilog. The modules that comprise the lock cache
are parametrized. The number of small critical section (CS)
locks, number of long CS locks, number of processing elements
(PEs) and the type of the PEs are parameters that are used by
PARLAK to build the lock cache. On the other hand, PARLAK
uses a library of components of the base architectures – built
previously – of the lock cache. Each module of the lock cache
is customized using the parameters specified by the user and

using the library components. The command executed by the
user is as follows:

GenLC { PE TYPE NUM PEs }+ { NUM SMALL } { NUM LONG }

where NUM SMALL, NUM LONG, PE TYPE and NUM PEs specify the
number of small CS locks, number of long CS locks, type of
processor and number of processors, respectively. The GenLC

command needs to know the type(s) of processor(s) used so
that the corresponding PE module and memory/interrupt con-
troller module instantiations are performed in the top hierarchy.
Also, note that {PE TYPE NUM PEs}+ specifies that one or more
occurences of “PE TYPE NUM PEs” may appear in the command
line. Currently, GenLC is geared to generate code for simula-
tion in Seamless CVE and only two PE TYPEs are supported:
MPC750 and MPC755.

scanner

function1 function2 functionN...
lab

el
1 label N

la
be

l 2

SoCLC

SoCLC
skeleton

file

Top
skeleton

file

library of
 modules/componentsTop

hierarchy

input
parameters

GenLC (NUM SMALL, NUM LONG, NUM PEs) {
/* Begin scanning the SoCLC skeleton file */
L = First label of SoCLC skeleton file;

WHILE (L) /*loop until labels are exhausted*/
{ switch (L) /*generate customized code for each label*/

case(1): { function1();}
case(2): { function2();}
. . .
case(N): { functionN();}

Insert customized code into SoCLC output file for L;
L = Next label of SoCLC skeleton file;

}
}

Figure 2: PARLAK building blocks and pseudo algorithm
of SoCLC code-generations.

PARLAK (Figure 2) handles the lock cache generation pro-
cess through the following three building blocks (see Figure 2
for pseudo code). The first building block is the set of in-
put parameters specified by the user that determine the SoCLC
size and capacity (for how many processors the SoCLC will
be generated and how many small and long CS locks the
SoCLC will support). The second building block is a skele-
ton SoCLC Verilog file which includes the base signal, pro-
cess and module descriptions that do not depend on any in-
put parameters. Moreover, this skeleton file is labeled at those
signal/module/process locations that strictly depend on the in-
put parameters. Based on this skeleton file, the correspond-
ing parametrized descriptions are generated and inserted into

an output file incrementally at each label. The third building
block consists of seed PARLAK functions that generate the ac-
tual parameter-dependent signal/module/process descriptions.
These functions interact with the library that includes the code
sections to be enumerated/instantiated according to the input
parameters. The library has been manually extracted from a
complete, fully customized SoCLC Verilog file. The functions
are executed at the corresponding labels as the skeleton input
file is scanned. Finally, there is PARLAK executable code that
manipulates these three building blocks. The PARLAK exe-
cutable gathers the parameters obtained from the user, scans the
skeleton input file for labels, calls the relevant functions at each
label encountered in order to generate the customized Verilog
code and integrates the generated code with the skeleton into an
output file (the pseudo code in Figure 2 depicts the steps taken
by the PARLAK executable). Execution is continued until all
the labels in the skeleton input file are exhausted. The result-
ing output file represents the final, synthesizable, customized
SoCLC architecture that the user is interested in. Note that
a similar flow of operations is performed in the top hierarchy
generation as well (Figure 2).

2.2. Synthesis Results
This section presents the synthesis results of the SoCLC.

The Design Compiler from Synopsys with a 0.25µ technology
TSMC standard cell library from LEDA has been used for the
synthesis of the SoCLC. Figure 3 illustrates how the SoCLC
scales as the number of locks is increased from 32 to 256.

32 48 64 80 80 96 96 128 160 144 160 192 192 256

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

A
re

a
 (

ga
te

s)

128 short + 128 long

64 short + 128 long

128 short + 64 long

32 short + 128 long

16 short + 128 long

128 short + 32 long

64 short + 64 long

32 short + 64 long

64 short + 32 long

16 short + 64 long

64 short + 16 long

32 short + 32 long

16 short + 32 long

16 short + 16 long

Number of locks in SoCLC and short CS and long CS lock combinations

Figure 3: Synthesis results for increasing number of locks
in the SoCLC. Number of PEs is equal to 4.

In case of four processors and 32 lock variables (16 short CS
locks and 16 long CS locks), the SoCLC occupies an area of
3,146 logic gates. However, in the case of four processors and
256 lock variables (128 short CS locks and 128 long CS locks),
the SoCLC occupies 12,699 logic gates. Here, the gate unit rep-
resents the area of a 2-input standard NAND gate. Figure 4, on
the other hand, illustrates how SoCLC scales as the number of
processors is increased for different combinations of number of
lock variables from 32 locks to 256 locks. The number of small
CS locks and long CS locks in each combination of Figure 4
are equal. While Figure 4 shows the total area of the SoCLC,

2 4 6 8 10 12 14

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500

Total Area Occupied by the SoCLC

Number of PEs

A
re

a
(g

at
es

)

256-lo
cks

128-locks

64-locks

32-locks

Figure 4: Synthesis results of the total area of the SoCLC
for increasing number of PEs for number of locks = 32, 64,
128 and 256.

Figure 5(a) and Figure 5(b) illustrate the memory-only logic
area and non-memory logic area, respectively (in short, adding
Figure 5(a) and Figure 5(b) together results in Figure 4). As
seen from the figures, the area increases linearly as the num-
ber of processors in the SoC and the number of lock variables
residing in the lock cache are increased.

2 4 6 8 10 12 14

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Memory-only Area

Number of PEs

A
re

a
(g

at
es

)

256-lo
cks

128-locks

64-locks

32-locks

2 4 6 8 10 12 14

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

Non-memory Logic Area

Number of PEs

A
re

a
(g

at
es

)

256-lo
cks

128-locks

64-locks

32-locks

(a) (b)

Figure 5: (a) Memory-only area of the SoCLC. (b) Non-
memory area of the SoCLC.

3. Conclusion
In conclusion, SoCLC is a high performance, intelligent

hardware solution, and, using the PARLAK tool, scalable, eas-
ily applicable, customizable versions of the SoCLC can be gen-
erated for a heterogeneous multiprocessor SoC design.

4. Acknowledgements
This research is funded by the State of Georgia under the

Yamacraw initiative (www.yamacraw.org) and by NSF under
INT-9973120, CCR-9984808 and CCR-0082164. We also ac-
knowledge software donations from Mentor Graphics and Syn-
opsys as well as hardware donations from Sun and Intel.

References
[1] B. E. Saglam (Akgul) and V. J. Mooney, “System-on-a-chip pro-

cessor synchronization support in hardware,” Design Automation
and Test in Europe (DATE’01), pp. 633–639, March 2001.

[2] B. E. S. Akgul, J. Lee, and V. J. Mooney, “A system-on-a-chip
lock cache with task preemption support,” Proceedings of the
International Conference on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES’01), pp. 149–157, November
2001.

[3] B. E. S. Akgul and V. J. Mooney, “The system-on-a-chip lock
cache,” International Journal of Design Automation for Embed-
ded Systems, vol. 7, no. 1-2, pp. 139–174, September 2002.

2

