
Low Power Probabilistic Floating Point Multiplier Design
AMAN GUPTA‡∏, SATYAM MANDAVALLI‡, VINCENT J. MOONEY§#&∏, KECK-VOON LING§∏, ARINDAM BASU§∏, HENRY JOHAN#∏ AND

BUDIANTO TANDIANUS#∏
‡International Institute of Information Technology, Hyderabad, India

§School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore
#School of Computer Engineering, Nanyang Technological University (NTU), Singapore

&School of Electrical and Computer Engineering, Georgia Institute of Technology, Georgia, USA
∏NTU-Rice Institute for Sustainable and Applied Infodynamics, Nanyang Technological University, Singapore

aman@students.iiit.ac.in, satyam@iiit.ac.in, mooney@ece.gatech.edu, {vjmooney, ekvling, arindam.basu, henryjohan, budi0010}@ntu.edu.sg

Abstract— We present a low power probabilistic floating point

multiplier. Probabilistic computation has been shown to be a

technique for achieving energy efficient designs. As best known to

the authors, this is the first attempt to use probabilistic digital

logic to attain low power in a floating point multiplier. To

validate the approach, probabilistic multiplications are

introduced in a ray tracing algorithm used in computer graphics

applications. It is then shown that energy savings of around 31%

can be achieved in a ray tracing algorithm’s floating point

multipliers with negligible degradation in the perceptual quality

of the generated image.

Keywords- probabilistic computation; floating point

multiplication;

I. INTRODUCTION
The floating point format provides a wide dynamic range

number representation as compared to other number formats.
This range comes at the cost of including a power (and area)
hungry floating point unit in an architecture. The use of
floating point in embedded systems can be limited because of
its huge power utilization when implemented in hardware. But
since there are applications which require a wide range of
numbers, it becomes inevitable to include a floating point unit
in the architecture. Hence, there is a need for designing low
power circuits for floating point operations to bring down the
overall power expenditure. Among the most extensively used
floating point operations, floating point multiplication is
typically the most frequent power consuming operation. For
this reason, the focus of this paper is to attain low power
floating point multiplication. In particular, we aim to explore a
tradeoff traditionally underutilized, namely, the tradeoff
between power (energy) and the probability of correct
computation. The idea of probabilistic computation [1, 2] is to
devote energy in a circuit such that more energy is invested in
more significant calculations and less energy is invested in less
significant calculations. Energy investment is reduced by
operating the less significant circuitry at a lower supply
voltage. But, as the technology scales down, it is predicted in
[3] that thermal noise is going to have a considerable effect in
the correct functioning of circuits. Hence, reducing voltage will
lead to a decrease in the noise immunity of a circuit. This
means that at a lower supply voltage, noise will have a greater
impact which may lead to erroneous results. Thus, there is a
need for modeling the effect of device noise for future
technology nodes, which becomes all the more essential when
using voltage scaling. This leads to generation of tradeoffs
between energy and accuracy, as lower energy means lowering
of supply voltage which in turn will lead to more erroneous
calculations. Such an attempt to develop energy efficient signal
processing using probabilistic computations was presented
in [2]. Of course, it should be mentioned here that other sources
of circuit error, such as single event upsets or random transistor

parametric variations, may also be able to be handled by the
approach presented in this paper. Applications which generate
data for human perception can produce “reasonably good”
results without requiring exact computations. By “reasonably
good” we mean that the perceived quality of the output is
almost the same as the output generated from exact
computations. The primary idea is to exploit the dynamics of
human perceptual cognition to facilitate energy savings.

One application which extensively uses floating point
numbers is ray tracing [10]. Ray tracing is a technique for
generating photorealistic images by simulating the behavior of
viewing and light rays as in an actual physical environment.
The algorithm requires a large dynamic range of numbers and
uses floating point representation for this purpose. A major
share of the total arithmetic operations required by a typical ray
tracing algorithm is composed of single precision floating point
multiplications. Since this application uses floating point
operations to generate data for human perception, we conduct
experiments on the ray tracing algorithm to demonstrate the
validity of the use of probabilistic multiplications to achieve
low power in floating point calculations.

This paper proposes a probabilistic design of a floating
point multiplier with the aim to attain large energy savings. The
usability of the design is then harnessed in a graphics
application with little to no observable effect on the visual
quality of the generated images. The rest of the paper is
organized as follows. Section II mentions some of the work
done previously to achieve low power circuits for floating point
multiplication. Section III presents the general floating point
architecture. Section IV explains our floating point multiplier
architecture and the low power techniques we use. The
experimental method is explained in Section V, and the results
are shown in Section VI. Section VII provides a discussion of
the results while Section VIII concludes the paper.

II. PRIOR WORK
Efforts have been made previously to reduce the power

consumed by floating point multipliers at the cost of having
some calculation errors. This was achieved mostly by reducing
the number of bits of the operands or by truncating hardware in
the floating point multiplier. The results of floating point bit
width reduction on various benchmarks are presented in [4]. It
has also been shown in [4] that most of the benchmarks are
unaffected by not rounding the multiplication result. Hence,
removing the rounding unit led to further power reduction.
Truncating hardware in the floating point multiplier was shown
in [5, 6]. Use of probabilistic computation in a ripple carry
adder and in a six bit integer array multiplier to achieve low
power in a Fast Fourier Transform was demonstrated in [2].
The implementation of this method in a Discrete Fourier
Transform technique for energy efficient design was shown in

[7]. Voltage assignment to minimize energy usage of a
probabilistic four bit integer array multiplier was done in [11].
As best known to the authors of this paper, we present here the
first attempt to implement probabilistic computing in a floating
point multiplier.

III. BACKGROUND

A single precision floating point number, according to the
IEEE 754 Standard [8], is represented as a 32-bit number with
23 mantissa bits, 8 exponent bits and 1 sign bit. The actual
mantissa bit length is 24 bits including the „hidden 1‟ before
the binary point. The architecture of a single precision floating
point multiplier is shown in Fig. 1. Multiplication of two
floating point numbers requires addition of the 8-bit exponents
and multiplication of the 24-bit mantissas of the operands. The
sign bit of the result is calculated by an XOR operation on the
sign bits of the operands. The result of the 24-bit mantissa
multiplication is a 48-bit binary number which needs to be
normalized. This is achieved by shifting the result to adjust the
binary point. The exponent of the result is adjusted according
to the shift. Normalization is followed by rounding the number
to give an output result with a 24-bit mantissa. Out of these
bits, the least significant 23 bits are stored as the mantissa of
the output, and the most significant bit, which is the „hidden 1‟,
is not stored. These 23 bits, along with the 8 bits from the
exponent sum and the calculated sign bit, form the 32-bit
floating point result. The difference in the architecture we
implement and a generic floating point multiplier, at a block
level, is that the rounding unit is not implemented in the
technique we propose. Hence, except for the Rounding Unit
shown in Fig. 1 as the rectangle with dotted lines, the rest of
the circuit of the implemented floating point multiplier remains
the same as that of a generic floating point multiplier.

Exponent (8) Mantissa (23)Sign (1)

24 bit

Multiplier

8 bit Adder

Shifter

Rounding

Unit

Mux

ControlIncrementer

Mux

1 1

Exponent (8) Mantissa (23)Sign (1)

Exponent (8) Mantissa (23)Sign (1)

Normalize

Operand 1 Operand 2

RESULT

Xor

Figure 1. Floating Point Architecture

IV. PROBABILISTIC FLOATING POINT

MULTIPLIER DESIGN

It has been shown in [4] that 81% of the total power
consumption of a single precision floating point multiplier is
from the 24-bit multiplier block, shown in Fig. 1. (From now
until the end of the paper, please read “floating point
multiplier” to refer to a single precision or 32-bit floating point
multiplier.) The rounding unit consumes around 18% of the
total power [4]. Since we do not find rounding to be needed in
this paper, around 99% of the floating point multiplier energy
is consumed in the 24-bit multiplier block. The multiplier block
consists of AND gates and full adders. About 5% of the 24-bit
multiplier block energy is consumed by the AND gates used to
calculate the partial products. We focus on applying low power
techniques only in the full adders of the 24-bit multiplier block
which consume 95% of the energy of the 24-bit multiplier
block. Therefore, in this paper we take the energy savings

achieved by the low power techniques applied to the full adders
to be approximately equivalent to the energy savings in the
whole floating point multiplier. A 24-bit array multiplier is
chosen to implement the multiplication since it is the most
fundamental multiplier design. The structure of an array
multiplier can be seen as full adders arranged in columns, each
column leading to a significant bit of the result, as shown in
Fig. 2. The full adder columns leading to calculation of more
significant bits are termed as more significant columns while
those leading to calculation of less significant bits are termed as
less significant columns.

FAFAFAFA

FAFAFA

X1Y1X2Y1X24Y1

X1Y2X2Y2X23Y2X24Y2

FA

X3Y1

X1Y3X22Y3X24Y3 X23Y3

FAFAFA FA

X1Y24X22Y24X24Y24 X23Y24

Z2

Z1

Z3

Z24Z45Z46Z47Z48

Example of

a column

0

0

0

0

Figure 2. A 24-bit Array Multiplier Structure

We now explain two known techniques that can make a
multiplier circuit run at a lower power at the cost of having
lower precision and perhaps some errors at the output, and then
we propose a new low power technique. Please note that we
assume a scenario where a floating point unit is dynamically
voltage scaled per application to minimize energy for a given
application; therefore, we keep the full 24-bit multiplier
hardware to be able to, if needed, use the full set of hardware
for highest accuracy. The first technique, termed as the sleep
technique, makes some of the less significant full adder
columns of the array multiplier go into a sleep mode. The
remaining full adder columns, which are not asleep, are
operated at the nominal technology voltage. The larger the
number of columns in sleep mode, the less is the energy
consumed at the cost of decreased precision in the
multiplication result. This scheme is analogous to hardware
truncation [5, 6]. We do not use the word truncation because
we just put the gates in a non-operational state and do not
actually truncate them. Note that the results for the sleep
scheme will be similar to the truncation techniques mentioned
in Section II. The second known technique makes use of
BIased VOltage Scaling (BIVOS). The method of BIVOS is
introduced and explained in [2]. The full adder columns receive
a biased supply voltage depending on the significance of the
calculation performed by them, an approach which was first
introduced in [11]. Full adders in the same column receive the
same supply voltage [11]. This paper proposes a technique
which builds on the sleep and BIVOS techniques. Starting from
the least significant columns, some columns are turned to sleep
mode while the rest of the columns are given a biased supply
voltage. The less significant columns, which are not in sleep
mode, are operated at a lower voltage as compared to the more
significant columns. This BIVOS + Sleep technique is shown
to out-perform either the sleep or the BIVOS technique alone.

We have assumed that the supply voltage can be chosen
from one of five voltages, namely, 0.8V, 0.9V, 1.0V, 1.1V and
1.2V. Please note that we assume a System on Chip (SoC)
scenario where voltage scaling is done for other SoC circuitry
as well. Hence, the above mentioned five voltages are already

available. The voltage for each full adder column can be any
one of the chosen supply voltages. A sequence of voltages
which defines the supply voltage of each full adder column is
termed as a „voltage profile‟ of a multiplier. An example of a
voltage profile, shown in Table I, operates the least significant
22 full adder columns in the sleep mode. The next two more
significant columns are operated at 0.8V and so on.

TABLE I. EXAMPLE OF A VOLTAGE PROFILE

Columns

(LSB-MSB)

Sleep(0V) 0.8V 0.9V 1.0V 1.1V 1.2V

1-22 23-24 25-29 30-33 34-35 36-46

V. EXPERIMENTAL METHOD

The scheme of probabilistic computation presented in this
paper uses scaling of the supply voltage. Our simulations use
the Synopsys 90nm library. To perform the experiments, we
have assumed that the supply voltage can be scaled to one of
five voltages, namely, 0.8V, 0.9V, 1.0V, 1.1V and 1.2V. It
should be mentioned here that the supply voltage can be
reduced below 0.8V but due to large increase in the latency of
the multiplier, we do not operate at voltages lower than 0.8V.
Also, the value of the voltage can be any arbitrary value, e.g.,
0.86, 0.92 but we have chosen voltages in steps of 0.1V to
conduct the experiments.

A. Error Rate Characterization
Introduction of the low power techniques, discussed in

Section IV, leads to errors at the output of the 24-bit

multiplication. A single precision floating point multiplication
requires a 24-bit multiplier. Simulating a 24-bit array

multiplier in HSPICE for as few as 300 samples takes more

than a day on a high end machine which has Intel Core 2 Quad

CPU at frequency 2.66 GHz with 4 GB main memory. As

introduction of probability is a statistical process, it is

necessary to use a large number of samples for simulations.

Also, the proposed technique involves voltage scaling and

thermal noise which cannot be achieved in traditional digital

simulation environments which are faster than HSPICE.

Hence, there is a need for a simulator which can be used to

quickly verify the applicability of the proposed techniques in

the floating point architecture, with a reasonable accuracy.
This motivated us to develop a simulator in the programming

language C. We calculate the error rate of a 1-bit full adder

from HSPICE and use that in a C simulator to calculate the

error rate at each output bit of a 24-bit multiplier. This is

explained in the following subsections.
1) Error Rate Calculation for a 1-bit Full Adder Using

HSPICE: We perform HSPICE simulations with a 90nm
technology library from Synopsys. The nominal supply
voltage at this technology is 1.2V. The supply voltage of the
full adders is varied over the mentioned five voltages.
Deliberate injection of Gaussian noise at each full adder
output is done to model the effect of thermal noise in the
circuit as explained in [9]. The value of the root mean square
(RMS) of noise is chosen so that there are no errors at the
output of the full adder when operated at 1.2V even after
injecting noise. The maximum noise RMS that does not cause
any errors at 1.2V, obtained experimentally from HSPICE,
comes out to be 0.15V. If the supply voltage is lower than
1.2V, there are errors at the output which increase as the
voltage is lowered. This is how we predict a possible noisy
future technology node (e.g., at 12nm); while of course no one
can guarantee a prediction of the future, we nonetheless use

this model of randomly distributed uncorrelated errors due to
thermal noise as a possible model of future probabilistic gates
[1,2,3,7,9,11]. The full adder is simulated in HSPICE for the
five stated supply voltages, at the given noise RMS. The full
adder is fed by 100K random samples with uniform
distribution of 1/0 at each input. The sum and the carry outputs
are observed, and the probability of error for each output is
calculated as explained in [9]. Error rate characterization of a
full adder for all voltages is shown in Table II.

TABLE II. ERROR RATE CHARACTERIZATION OF A FULL ADDER

Supply Voltage 1.2V 1.1V 1.0V 0.9V 0.8V

Probability of error of sum 0.0 4E-5 5E-5 1.2E-4 3.9E-4

Probability of error of carry 0.0 0.0 2E-5 9E-5 3E-4

2) Error Rate Calculation for a Multiplier Using a C
Simulator: The goal of the simulator is to generate error rates
for each output of an array multiplier using the error rates of
the full adder [9]. The process of obtaining error rates of a full
adder from HSPICE was explained in the previous section. We
state the timing assumptions that have been followed in the
development of the simulator. It is assumed that all the new
inputs to a gate arrive at the same time. Hence, before
calculating the output of the current full adder in the circuit, all
the gates whose outputs are the inputs of the current full adder
under consideration have been simulated. The gates can be
operated in sleep mode, which makes them non-operational.
The outputs of such gates are considered to be logic 0.

The C simulator has a full adder model which takes as input
three bits and generates a carry output and a sum output.
Initially the correct outputs according to the inputs are
calculated. Each full adder then introduces errors at its outputs
in accordance with the supply voltage by using the probability
of error values from the error rate characterization of the full
adder. To model the effect of device noise, we introduce errors
in the C simulator with the help of the inbuilt random number
generator in C. A voltage profile, introduced in the previous
section, along with the error rate characterization of the full
adder for each voltage is given as input to the simulator. Each
24-bit input operand represents a mantissa of a floating point
number. Since these numbers represent mantissas, the most
significant bit, i.e., the 24th bit for both operands (where the
LSB is the 1st bit) is fixed as 1 to model the „hidden 1‟ of a
normalized floating point mantissa. The least significant 23 bits
are generated randomly with equal chances for each bit to be
1/0. A model of an array multiplier is developed in C using full
adders which takes as input two 24-bit numbers and generates
the 48-bit multiplication result. The binary operands are fed to
the array multiplier model in the simulator.

Each full adder in the array multiplier is fed with inputs
according to the input operands and the outputs of the previous
gates, depending on the full adder‟s position in the array
structure of Fig. 2. The generated outputs are propagated to the
next gates. Errors are generated at each full adder according to
the supply voltage specified by the voltage profile, and the
48-bit output is generated. The output is then normalized. The
least significant 24 bits of this normalized output are generally
used for rounding. As the proposed floating point architecture
does not use any rounding, these bits are not used past
normalization. The most significant 24 bits of the 48-bit
normalized output forms the mantissa of the probabilistic
result. To calculate the error rate of each mantissa bit at the
output, the probabilistic result needs to be compared with the

exact multiplication result. To do so, the 24-bit input operands
are correctly multiplied and rounded, to calculate the exact
multiplication result. The mantissa of the exact result is then
compared with the mantissa of the probabilistic result. Please
note that rounding is done only to calculate the exact result and
not the probabilistic result. To generate the probability of error
of each bit at the output, simulations are done for 100K
samples. These probability values are then fed to the ray
tracing application, where exact multiplications are replaced by
probabilistic multiplications and an image is generated by using
probabilistic multiplications.

To validate the error rate values generated by the
C simulator, a comparison is done between a 6-bit array
multiplier simulated in HSPICE and in the C simulator. The
comparison was done for 50K samples for each of the three
low power schemes mentioned in Section IV. Simulation of
each of the low power schemes took two days on a high end
machine. The average inaccuracy in the results generated by
the C simulator is reported in Table III. The voltage profile
used for each scheme is shown in Table IV. Note that the total
number of full adder columns in a 6-bit multiplier is 10.

TABLE III. AVERAGE INACCURACY IN C SIMULATOR RESULTS

Low Power Scheme SLEEP BIVOS BIVOS+SLEEP

Average Inaccuracy per Output Bit

when Compared with HSPICE
4.13% 7.26% 5.29%

TABLE IV. VOLTAGE PROFILE FOR 6-BIT SIMULATIONS

 Sleep(0V) 0.8V 0.9V 1.0V 1.1V 1.2V

Columns

(LSB

-

MSB)

SLEEP 1-3 - - - - 4-10

BIVOS - 1-10 - - - -

BIVOS

+SLEEP
1-3 4 5 6 7 8-10

B. Energy Characterization

Depending on the voltage profile, the circuit consumes

different amounts of energy. The total energy consumed by a
gate depends on the number of toggles that occur at the gate

output and the energy consumed per output toggle. We

calculate, from HSPICE, the energy consumed when the sum

and the carry output of a full adder toggles. We then calculate

the total number of toggles that occur in a multiplier using

Verilog and hence find the total energy consumed in the

multiplier. This is explained in the following sub sections.

1) Energy Calculations for Sum and Carry Toggles Using
HSPICE: The total energy consumed by the full adder can be
divided into the energy consumed for sum calculation and the
energy consumed for carry calculation. Fig. 3 shows the
transistor diagram we use for a 1-bit full adder with A, B, C,
Sum and Carry as the three inputs and two outputs,
respectively. We identify the part of the full adder circuit that
calculates the sum output, shown in Fig. 3 with supply voltage
named as „VDD_Sum‟, and the part of the full adder circuit
that calculates the carry output, shown in Fig. 3 with supply
voltage named as „VDD_Carry‟. We compute the energy
consumed in each part when the full adder is fed with 50K
samples in HSPICE. This provides the total energy consumed
for sum calculation and the total energy consumed for carry
calculation. The input samples for this experiment were
generated using random number generation in C, and were fed
as inputs in HSPICE, keeping uniform distribution of 1/0 at
each input. During the sample generation, the input samples
were analyzed to calculate the total number of toggles that will

be generated by these samples at the sum and the carry output
of the full adder. We divide the total energy consumed for sum
calculation by the total number of toggles for sum to get the
energy consumed per sum toggle. Similarly, we calculate the
energy consumed per carry toggle. These simulations are done
for the five stated supply voltages, and a look up table for
every supply voltage is generated as shown in Table V. Hence,
for each supply voltage, the energy consumed per sum toggle,
and the energy consumed per carry toggle are tabulated. We
assume that energy is consumed only when any output toggles.
For the 90nm process we use, leakage accounts for 0.1% of
the energy consumed. For technologies with significant
leakage, we would need to add static power to our model.

A B

C

A

B

A

BA B

A B C

A B C

A

A

B

B

C

C

VDD_Sum

VDD_Sum

VDD_Carry

Carry

VDD_Carry

VDD_Sum

Sum

Figure 3. Full Adder Transistor Diagram

TABLE V. ENERGY CHARACTERIZATION OF A FULL ADDER

Supply Voltage 1.2V 1.1V 1.0V 0.9V 0.8V

Energy consumed per

sum toggle (x E-14 Joules)
5.97 4.90 3.85 2.96 2.24

Energy consumed per

carry toggle (x E-14 Joules)
7.02 5.80 4.6 3.51 2.68

2) Energy Calculations for a Multiplier Using Verilog:
The energy consumed per carry toggle and per sum toggle is
calculated as explained in the previous section. To calculate
the energy consumed by a larger circuit (e.g., an array
multiplier) consisting of full adders, the average number of
toggles for sum and carry output for each of the full adders in
the circuit is required. A Verilog description of a 24-bit array
multiplier was simulated in ALDEC Active-HDL 6.3 [12] and
its Toggle Coverage feature was used to calculate the toggle
rate. The number of toggles depends on the input to output
delays of the full adder. Hence, for each input combination,
the delays from each input to each output were calculated from
HSPICE. This was done for all the five voltages considered,
using the Synopsys 90nm library. Then, corresponding to each
voltage, the delays were specified in the Verilog description.
The toggle rate was calculated for each low power scheme,
given a voltage profile, as the number of toggles is different
for each scheme. Simulations were done for 50K random
samples for each low power scheme with uniform distribution
of 1/0 at each input bit. The calculated toggle rate was then
multiplied with the energy per toggle values obtained from the
energy characterization of the full adder, in accordance with
the voltage profile, to find the total energy consumed by the
circuit. To verify the energy values generated from toggle
calculations, a 6-bit array multiplier was simulated in HSPICE
and in Verilog for each of the low power schemes, for the
same voltage profile shown in Table IV, and the results were
compared. The energy consumed was calculated for 50K
samples and the results are reported in Table VI. The final aim
of the energy calculations is to compare the performance of
the low power techniques, i.e., to know how much more/less

energy is consumed by a particular scheme as compared to the
other schemes. Assume that simulation of two designs, say A
and B, in HSPICE states that A consumes X% of the energy
consumed by B. If the same designs were simulated using
Verilog and the results show that A consumes X% of the
energy consumed by B, then the comparisons are correct.
Hence, instead of matching the actual energy values of A and
B fom HSPICE and Verilog, we calculate the energy
consumed by A with respect to B from HSPICE and the
energy consumed by A with respect to B from Verilog and
compare that value. For comparisons of the low power
schemes, we focus on relative accuracy rather than absolute
accuracy, i.e., we compare all the schemes simulated in
HSPICE with respect to one of the scheme simulated in
HSPICE and calculate the percentage of energy consumed by
each with respect to that one scheme. Similarly, we compare
all the schemes simulated in Verilog with respect to one of the
scheme simulated in Verilog and calculate the percentage of
energy consumed by each with respect to that one scheme.
This can be seen as normalization of the values with respect to
that one scheme. The comparisons can be made with respect to
any scheme. In Table VI, in the third column, comparisons are
done for HSPICE and Verilog with respect to their
corresponding Sleep techniques. As seen from Table VI, the
inaccuracy in the Verilog results is under 5%.

TABLE VI. ENERGY CALCULATIONS

Low

Power

Scheme

Energy/sample (J)

calculated from

Energy/sample

calculated with respect

to the corresponding

Sleep scheme

Inaccuracy

in

Verilog

results
HSPICE VERILOG HSPICE VERILOG

SLEEP 1.92E-12 1.80E-12 100% 100% -

BIVOS 9.22E-13 8.45E-13 48.03% 46.93% 2.29%

BIVOS

+SLEEP
1.53E-12 1.37E-12 80.03% 76.45% 4.47%

C. Ray tracing

In the implemented ray tracing algorithm [10], single
precision floating point multiplications account for 54% of the
total number of arithmetic operations as shown in Fig. 4. Out of
the total multiplications, around 72% of the multiplications
were from determinant value calculations for matrices. These
determinant calculations were of two types. Type 1 calculations
were used in the algorithm to find the distance to the point of
intersection. Type 2 calculations were used to find the
interpolation parameters of the point of intersection.
Introduction of errors in the type 1 multiplications leads to
wrong distance calculations. If the distance calculated, using
probabilistic multiplications, to the point of intersection of the
ray, yields a result less than the exact distance, the ray falls
short of the point of intersection. On the other hand, if the
distance calculated is larger than the actual exact distance, the
ray goes to a point beyond the actual intersection point. Both of
these cases may lead to an increase in the number of rays in the
simulation of light-object interaction. Due to the recursive
nature of the algorithm, larger numbers of rays cause an
increase in the total number of operations as compared to the
case when exact calculations are done. The recursive nature can
be seen by a loop formation in the flow chart of Fig. 4.
Introduction of errors in the type 2 calculations only causes a
displacement in the position of the point of intersection, which
does not cause any increase in the number of arithmetic

operations executed by the algorithm. Type 2 operations
account for 69% of the matrix calculations which is 50% of the
total number of multiplications. Hence, type 2 multiplications
which account for 50% of the total single precision floating
point multiplications were made probabilistic according to the
low power techniques explained in Section IV. The share of
various operations shown in Fig. 4 is calculated by simulating
the ray tracing algorithm for different graphics models such as
Stanford Bunny, Stanford Dragon and Stanford Armadillo, and
taking the average value for each operation. These models are
courtesy of the Stanford Computer Graphics Laboratory.

 Now we explain how the probability of error generated
from the C simulator is injected in to the ray tracing algorithm.
First, the correct multiplication result is calculated. This result
is then converted into its 32-bit binary representation. Out of
the 32 bits, the 23 mantissa bits are extracted and errors are
introduced in the same manner as was done in Section V.A.2 in
the C simulator. Errors are introduced only in the mantissa of
the number while the exponent and sign bit calculations are
error free. This erroneous 23-bit mantissa along with the 8-bit
exponent and the sign bit of the correct result is converted into
a floating point number. This number replaces the correct result
in the ray tracing algorithm executed in C.

Figure 4. Ray Tracing Algorithm

VI. SIMULATION AND RESULTS
For the experiments, we first define an ideal case and a base

case. The ideal case is taken as the one in which no errors are
introduced into the multiplications of the ray tracing algorithm.
Correctly rounded multiplication results are used to generate
the output in the ideal case. The image generated from the ideal
case does not have any deliberately introduced errors and is
called the ideal image. To find out the actual reduction in the
quality of the image generated from the low power schemes,
we compare all the generated images with the ideal image to
have a fair comparison. The base case is considered to be the
one in which only rounding errors are introduced in the
multiplier. All the full adders are operated at the nominal
technology supply voltage of 1.2V. The energy consumed in
this base case (note this is not the ideal case) is considered to
be 100% energy. Energy consumed by application of low
power schemes is compared with respect to the base case.

 Peak Signal-to-Noise Ratio (PSNR) is used to represent the
quality of the generated image. The graphics models used in
the ray tracing algorithm for the experiment are the Stanford
Bunny, Stanford Dragon and Stanford Armadillo. The results
were calculated from colored images of resolution 200x200.
The image generated “looks good” when the PSNR value is

47dB or greater. The energy consumed using sleep, BIVOS and
the proposed BIVOS + Sleep technique, for a fixed image
quality, is shown in Table VII. As mentioned, the energy
consumed is with respect to the base case. For the
BIVOS + Sleep case at 38% energy, the voltage profile for the
full adder columns is shown in Table VIII. A column value of 1
in Table VIII refers to the least significant full adder column.
The voltage profile was selected by simulating different voltage
values for different full adder columns in the C simulator and
choosing the one which met the requirements of the output
image quality. Images of the graphics model after ray tracing
for the ideal case and BIVOS + Sleep at 38% energy are shown
in Fig. 5. Hence, the results show that an energy savings of
62% can be achieved in a floating point multiplier by
application of the proposed BIVOS + Sleep technique. The
proposed BIVOS + Sleep technique at 38% energy can be
operated at the same clock frequency as the base case because
the increase in the delay due to lowering of voltages is
compensated by a reduction in the critical path as large number
of lower significant columns are operated in sleep mode.

TABLE VII. IMAGE QUALITY VERSUS ENERGY CONSUMPTION

PSNR(dB)

Relative to the

Ideal Image

Energy Relative to the Base Case

 BIVOS Sleep
BIVOS +

SLEEP

58 dB 80% 75% 66%

47 dB 55% 51% 38%

TABLE VIII. VOLTAGE PROFILE FOR BIVOS+SLEEP AT 38% ENERGY

Voltage Sleep 0.8V 0.9V 1.0V 1.1V 1.2V

Column 1-22 23-24 25-29 30-33 34-35 36-46

To calculate the cost of voltage shifters, used for storing the
results to memory, for bits operated at supply voltage less than
1.2V (for 90nm technology), we simulated the voltage shifter
presented in [13] in HSPICE. The total energy consumed by
voltage shifters was 0.15% of the energy consumed by the 24-
bit multiplier in the base case. The percentage increase in area,
due to voltage shifters, was around 0.014%. Hence, the cost of
including voltage shifters, on the overall energy consumption
and area of the proposed multiplier design, is negligible.

 (a) Ideal Images

 (b) BIVOS + Sleep at 38% Energy

 (i) Stanford Bunny (ii) Stanford Armadillo (iii) Stanford Dragon

Figure 5. Images generated using Ray Tracing

VII. DISCUSSION OF RESULTS

One of the main reasons that this BIVOS + Sleep technique
outperforms either the sleep or the BIVOS technique alone for
a floating point multiplier is that, although the output of the
24-bit multiplication is 48 bits, the least significant 24 bits after
normalization contribute merely to rounding and only the most
significant 24 bits are stored as mantissa. Hence, one can afford
large errors in the least significant columns which can be
achieved by putting the full adders to sleep. This is where the

BIVOS scheme lags as BIVOS will still invest some amount of
energy in the least significant columns. Moreover, with
BIVOS, the critical path delay of the multiplier is greater than
the clock period. The full adder columns just after the columns
which are in sleep mode have a large amount of error because
no calculation has been performed prior to that column. So,
even if we operate the next few columns at the lowest available
voltage, the new errors generated due to operation at a lower
voltage are much less than the errors propagated from the
previous columns in sleep mode. This is where the Sleep
scheme lags as Sleep will operate the next columns at the
highest voltage and will have almost the same error rate as the
case when the columns are operated at a lower voltage.

VIII. CONCLUSION
The results show that with the proposed BIVOS + Sleep

scheme, energy savings of around 62% can be achieved in a
floating point multiplier. As the low power schemes are applied
to 50% of the total multiplications of ray tracing algorithm, the
overall application-level energy savings in the multiplications
is equal to 31%. This is a significant improvement in energy
savings achieved by the next best technique, sleep, for the same
image quality. For our future work we plan to investigate
alternative multiplier architectures such as Wallace trees.

REFERENCES
[1] K. V. Palem, “Energy aware algorithm design via probabilistic

computing: From algorithms and models to moore‟s law and novel

(semiconductor) devices,” Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems

(CASES‟03), October 2003, pp. 113–116.
[2] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem, “Probabilistic

arithmetic and energy efficient embedded signal processing,”
Proceedings of the 2006 International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, October 2006,
pp. 158–168.

[3] L. B. Kish, “End of Moore‟s law: Thermal (noise) death of integration in
micro and nano electronics,” Physics Letters A, 2002, vol. 305, no. 3-4,

pp. 144–149.
[4] J. Y. F. Tong, D. Nagle, Rob. A. Rutenbar, “Reducing power by

optimizing the necessary precision/range of floating-point arithmetic,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

June 2000, vol.8, n.3, pp. 273-285.
[5] M. J. Schulte, K. E. Wires and J. E. Stine, “Variable-Correction

Truncated Floating Point Multipliers,” Proceedings of the Thirty Fourth
Asilomar Conference on Signals, Circuits and Systems, 2000,

pp. 1344-1348.
[6] K. E. Wires, M. J. Schulte and J. E. Stine, “Combined IEEE Compliant

and Truncated Floating Point Multipliers for Reduced Power
Dissipation,” IEEE International Conference on Computer Design

(ICCD), Austin, TX, September 2001, pp. 497–500.
[7] L. N.B. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George, K.

V. Palem, “Highly Energy and Performance Efficient Embedded
Computing Through Approximately Correct Arithmetic: A

Mathematical Foundation and Preliminary Experimental Validation,”

Proceedings of CASES 2008, Atlanta, October 2008, pp. 187-196.

[8] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008,
pp. 1-58.

[9] A. Singh, A. Basu, K.V. Ling and V. J. Mooney, “Modeling Multi-
output Filtering Effects in PCMOS,” Proceedings of the VLSI Design

and Test Conference (VLSI-DAT 2011), April 2011.
[10] T. Whitted, “An improved illumination model for shaded display,”

Communications of the ACM, June 1980, v.23 n.6, pp. 343-349.
[11] M. Lau, K. V. Ling, and Y. C. Chu, “Energy-Aware Probabilistic

Multipliers: Design and Analysis,” Proceedings of CASES 2009,
October 2009, pp. 281- 290.

[12] Active Hdl 6.3 Manual, ALDEC (http://www.aldec.com/activehdl/)
[13] Kyoung-Hoi Koo, Jin-Ho Seo, Myeong-Lyong Ko and Jae-Whui Kim,

“A New Level-up Shifter for High Speed and Wide Range Interface in
Ultra Deep Sub-Micron”, IEEE International Symposium on Circuits

and Systems, 2005, (ISCAS „05), vol. 2, pp. 1063- 1065, May 2005.

