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Abstract— We present a low power probabilistic floating point 

multiplier. Probabilistic computation has been shown to be a 

technique for achieving energy efficient designs. As best known to 

the authors, this is the first attempt to use probabilistic digital 

logic to attain low power in a floating point multiplier. To 

validate the approach, probabilistic multiplications are 

introduced in a ray tracing algorithm used in computer graphics 

applications. It is then shown that energy savings of around 31% 

can be achieved in a ray tracing algorithm’s floating point 

multipliers with negligible degradation in the perceptual quality 

of the generated image.  

Keywords- probabilistic computation; floating point 

multiplication; 

I. INTRODUCTION 
The floating point format provides a wide dynamic range 

number representation as compared to other number formats. 
This range comes at the cost of including a power (and area) 
hungry floating point unit in an architecture. The use of 
floating point in embedded systems can be limited because of 
its huge power utilization when implemented in hardware. But 
since there are applications which require a wide range of 
numbers, it becomes inevitable to include a floating point unit 
in the architecture. Hence, there is a need for designing low 
power circuits for floating point operations to bring down the 
overall power expenditure. Among the most extensively used 
floating point operations, floating point multiplication is 
typically the most frequent power consuming operation. For 
this reason, the focus of this paper is to attain low power 
floating point multiplication. In particular, we aim to explore a 
tradeoff traditionally underutilized, namely, the tradeoff 
between power (energy) and the probability of correct 
computation. The idea of probabilistic computation [1, 2] is to 
devote energy in a circuit such that more energy is invested in 
more significant calculations and less energy is invested in less 
significant calculations. Energy investment is reduced by 
operating the less significant circuitry at a lower supply 
voltage. But, as the technology scales down, it is predicted in 
[3] that thermal noise is going to have a considerable effect in 
the correct functioning of circuits. Hence, reducing voltage will 
lead to a decrease in the noise immunity of a circuit. This 
means that at a lower supply voltage, noise will have a greater 
impact which may lead to erroneous results. Thus, there is a 
need for modeling the effect of device noise for future 
technology nodes, which becomes all the more essential when 
using voltage scaling. This leads to generation of tradeoffs 
between energy and accuracy, as lower energy means lowering 
of supply voltage which in turn will lead to more erroneous 
calculations. Such an attempt to develop energy efficient signal 
processing using probabilistic computations was presented 
in [2]. Of course, it should be mentioned here that other sources 
of circuit error, such as single event upsets or random transistor 

parametric variations, may also be able to be handled by the 
approach presented in this paper. Applications which generate 
data for human perception can produce “reasonably good” 
results without requiring exact computations. By “reasonably 
good” we mean that the perceived quality of the output is 
almost the same as the output generated from exact 
computations. The primary idea is to exploit the dynamics of 
human perceptual cognition to facilitate energy savings.  

One application which extensively uses floating point 
numbers is ray tracing [10]. Ray tracing is a technique for 
generating photorealistic images by simulating the behavior of 
viewing and light rays as in an actual physical environment. 
The algorithm requires a large dynamic range of numbers and  
uses floating point representation for this purpose. A major 
share of the total arithmetic operations required by a typical ray 
tracing algorithm is composed of single precision floating point 
multiplications. Since this application uses floating point 
operations to generate data for human perception, we conduct 
experiments on the ray tracing algorithm to demonstrate the 
validity of the use of probabilistic multiplications to achieve 
low power in floating point calculations.  

This paper proposes a probabilistic design of a floating 
point multiplier with the aim to attain large energy savings. The 
usability of the design is then harnessed in a graphics 
application with little to no observable effect on the visual 
quality of the generated images. The rest of the paper is 
organized as follows. Section II mentions some of the work 
done previously to achieve low power circuits for floating point 
multiplication. Section III presents the general floating point 
architecture. Section IV explains our floating point multiplier 
architecture and the low power techniques we use. The 
experimental method is explained in Section V, and the results 
are shown in Section VI. Section VII provides a discussion of 
the results while Section VIII concludes the paper. 

II.  PRIOR WORK 
Efforts have been made previously to reduce the power 

consumed by floating point multipliers at the cost of having 
some calculation errors. This was achieved mostly by reducing 
the number of bits of the operands or by truncating hardware in 
the floating point multiplier. The results of floating point bit 
width reduction on various benchmarks are presented in [4]. It 
has also been shown in [4] that most of the benchmarks are 
unaffected by not rounding the multiplication result. Hence, 
removing the rounding unit led to further power reduction. 
Truncating hardware in the floating point multiplier was shown 
in [5, 6].  Use of probabilistic computation in a ripple carry 
adder and in a six bit integer array multiplier to achieve low 
power in a Fast Fourier Transform was demonstrated in [2]. 
The implementation of this method in a Discrete Fourier 
Transform technique for energy efficient design was shown in 



[7]. Voltage assignment to minimize energy usage of a 
probabilistic four bit integer array multiplier was done in [11]. 
As best known to the authors of this paper, we present here the 
first attempt to implement probabilistic computing in a floating 
point multiplier. 

III. BACKGROUND 

A single precision floating point number, according to the 
IEEE 754 Standard [8], is represented as a 32-bit number with 
23 mantissa bits, 8 exponent bits and 1 sign bit. The actual 
mantissa bit length is 24 bits including the „hidden 1‟ before 
the binary point. The architecture of a single precision floating 
point multiplier is shown in Fig. 1. Multiplication of two 
floating point numbers requires addition of the 8-bit exponents 
and multiplication of the 24-bit  mantissas of the operands. The 
sign bit of the result is calculated by an XOR operation on the 
sign bits of the operands. The result of the 24-bit mantissa 
multiplication is a 48-bit binary number which needs to be 
normalized. This is achieved by shifting the result to adjust the 
binary point. The exponent of the result is adjusted according 
to the shift. Normalization is followed by rounding the number 
to give an output result with a 24-bit mantissa. Out of these 
bits, the least significant 23 bits are stored as the mantissa of 
the output, and the most significant bit, which is the „hidden 1‟, 
is not stored. These 23 bits, along with the 8 bits from the 
exponent sum and the calculated sign bit, form the 32-bit 
floating point result. The difference in the architecture we 
implement and a generic floating point multiplier, at a block 
level, is that the rounding unit is not implemented in the 
technique we propose. Hence, except for the Rounding Unit 
shown in Fig. 1 as the rectangle with dotted lines, the rest of 
the circuit of the implemented floating point multiplier remains 
the same as that of a generic floating point multiplier. 
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Figure 1.   Floating Point Architecture 

IV.  PROBABILISTIC FLOATING POINT 

MULTIPLIER DESIGN   

It has been shown in [4] that 81% of the total power 
consumption of a single precision floating point multiplier is 
from the 24-bit multiplier block, shown in Fig. 1. (From now 
until the end of the paper, please read “floating point 
multiplier” to refer to a single precision or 32-bit floating point 
multiplier.) The rounding unit consumes around 18% of the 
total power [4]. Since we do not find rounding to be needed in 
this paper, around 99% of the floating point multiplier energy 
is consumed in the 24-bit multiplier block. The multiplier block 
consists of AND gates and full adders. About 5% of the 24-bit 
multiplier block energy is consumed by the AND gates used to 
calculate the partial products. We focus on applying low power 
techniques only in the full adders of the 24-bit multiplier block 
which consume 95% of the energy of the 24-bit multiplier 
block. Therefore, in this paper we take the energy savings 

achieved by the low power techniques applied to the full adders 
to be approximately equivalent to the energy savings in the 
whole floating point multiplier. A 24-bit array multiplier is 
chosen to implement the multiplication since it is the most 
fundamental multiplier design. The structure of an array 
multiplier can be seen as full adders arranged in columns, each 
column leading to a significant bit of the result, as shown in 
Fig. 2. The full adder columns leading to calculation of more 
significant bits are termed as more significant columns while 
those leading to calculation of less significant bits are termed as 
less significant columns.  
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Figure 2.   A 24-bit Array Multiplier Structure 

We now explain two known techniques that can make a 
multiplier circuit run at a lower power at the cost of having 
lower precision and perhaps some errors at the output, and then 
we propose a new low power technique. Please note that we 
assume a scenario where a floating point unit is dynamically 
voltage scaled per application to minimize energy for a given 
application; therefore, we keep the full 24-bit multiplier 
hardware to be able to, if needed, use the full set of hardware 
for highest accuracy. The first technique, termed as the sleep 
technique, makes some of the less significant full adder 
columns of the array multiplier go into a sleep mode. The 
remaining full adder columns, which are not asleep, are 
operated at the nominal technology voltage. The larger the 
number of columns in sleep mode, the less is the energy 
consumed at the cost of decreased precision in the 
multiplication result. This scheme is analogous to hardware 
truncation [5, 6]. We do not use the word truncation because 
we just put the gates in a non-operational state and do not 
actually truncate them. Note that the results for the sleep 
scheme will be similar to the truncation techniques mentioned 
in Section II. The second known technique makes use of 
BIased VOltage Scaling (BIVOS). The method of BIVOS is 
introduced and explained in [2]. The full adder columns receive 
a biased supply voltage depending on the significance of the 
calculation performed by them, an approach which was first 
introduced in [11]. Full adders in the same column receive the 
same supply voltage [11]. This paper proposes a technique 
which builds on the sleep and BIVOS techniques. Starting from 
the least significant columns, some columns are turned to sleep 
mode while the rest of the columns are given a biased supply 
voltage. The less significant columns, which are not in sleep 
mode, are operated at a lower voltage as compared to the more 
significant columns. This BIVOS + Sleep technique is shown 
to out-perform either the sleep or the BIVOS technique alone. 

We have assumed that the supply voltage can be chosen 
from one of five voltages, namely, 0.8V, 0.9V, 1.0V, 1.1V and 
1.2V. Please note that we assume a System on Chip (SoC) 
scenario where voltage scaling is done for other SoC circuitry 
as well. Hence, the above mentioned five voltages are already 



available. The voltage for each full adder column can be any 
one of the chosen supply voltages. A sequence of voltages 
which defines the supply voltage of each full adder column is 
termed as a „voltage profile‟ of a multiplier. An example of a 
voltage profile, shown in Table I, operates the least significant 
22 full adder columns in the sleep mode. The next two more 
significant columns are operated at 0.8V and so on.  

TABLE I.  EXAMPLE OF A VOLTAGE PROFILE 

Columns 

(LSB-MSB) 

Sleep(0V) 0.8V 0.9V 1.0V 1.1V 1.2V 

1-22 23-24 25-29 30-33 34-35 36-46 

V. EXPERIMENTAL METHOD 

The scheme of probabilistic computation presented in this 
paper uses scaling of the supply voltage. Our simulations use 
the Synopsys 90nm library. To perform the experiments, we 
have assumed that the supply voltage can be scaled to one of 
five voltages, namely, 0.8V, 0.9V, 1.0V, 1.1V and 1.2V. It 
should be mentioned here that the supply voltage can be 
reduced below 0.8V but due to large increase in the latency of 
the multiplier, we do not operate at voltages lower than 0.8V. 
Also, the value of the voltage can be any arbitrary value, e.g., 
0.86, 0.92 but we have chosen voltages in steps of 0.1V to 
conduct the experiments.  

A. Error Rate Characterization 
Introduction of the low power techniques, discussed in 

Section IV, leads to errors at the output of the 24-bit 

multiplication. A single precision floating point multiplication 
requires a 24-bit multiplier. Simulating a 24-bit array 

multiplier in HSPICE for as few as 300 samples takes more 

than a day on a high end machine which has Intel Core 2 Quad 

CPU at frequency 2.66 GHz with 4 GB main memory. As 

introduction of probability is a statistical process, it is 

necessary to use a large number of samples for simulations. 

Also, the proposed technique involves voltage scaling and 

thermal noise which cannot be achieved in traditional digital 

simulation environments which are faster than HSPICE. 

Hence, there is a need for a simulator which can be used to 

quickly verify the applicability of the proposed techniques in 

the floating point architecture, with a reasonable accuracy. 
This motivated us to develop a simulator in the programming 

language C. We calculate the error rate of a 1-bit full adder 

from HSPICE and use that in a C simulator to calculate the 

error rate at each output bit of a 24-bit multiplier. This is 

explained in the following subsections. 
1) Error Rate Calculation for a 1-bit Full Adder Using 

HSPICE: We perform HSPICE simulations with  a 90nm 
technology library from Synopsys. The nominal supply 
voltage at this technology is 1.2V. The supply voltage of the 
full adders is varied over the mentioned five voltages. 
Deliberate injection of Gaussian noise at each full adder 
output is done to model the effect of thermal noise in the 
circuit as explained in [9]. The value of the root mean square 
(RMS) of noise is chosen so that there are no errors at the 
output of the full adder when operated at 1.2V even after 
injecting noise. The maximum noise RMS that does not cause 
any errors at 1.2V, obtained experimentally from HSPICE, 
comes out to be 0.15V. If the supply voltage is lower than 
1.2V, there are errors at the output which increase as the 
voltage is lowered. This is how we predict a possible noisy 
future technology node (e.g., at 12nm); while of course no one 
can guarantee a prediction of the future, we nonetheless use 

this model of randomly distributed uncorrelated errors due to 
thermal noise as a possible model of future probabilistic gates 
[1,2,3,7,9,11]. The full adder is simulated in HSPICE for the 
five stated supply voltages, at the given noise RMS. The full 
adder is fed by 100K random samples with uniform 
distribution of 1/0 at each input. The sum and the carry outputs 
are observed, and the probability of error for each output is 
calculated as explained in [9]. Error rate characterization of a 
full adder for all voltages is shown in Table II. 

TABLE II.  ERROR RATE CHARACTERIZATION OF A FULL ADDER  

Supply Voltage 1.2V 1.1V 1.0V 0.9V 0.8V 

Probability of error of sum 0.0 4E-5 5E-5 1.2E-4 3.9E-4 

Probability of error of carry 0.0 0.0 2E-5 9E-5 3E-4 

2) Error Rate Calculation for a Multiplier Using a C 
Simulator: The goal of the simulator is to generate error rates 
for each output of an  array multiplier using the error rates of 
the full adder [9]. The process of obtaining error rates of a full 
adder from HSPICE was explained in the previous section. We 
state the timing assumptions that have been followed in the 
development of the simulator. It is assumed that all the new 
inputs to a gate arrive at the same time. Hence, before 
calculating the output of the current full adder in the circuit, all 
the gates whose outputs are the inputs of the current full adder 
under consideration have been simulated. The gates can be 
operated in sleep mode, which makes them non-operational. 
The outputs of such gates are considered to be logic 0. 

The C simulator has a full adder model which takes as input 
three bits and generates a carry output and a sum output. 
Initially the correct outputs according to the inputs are 
calculated. Each full adder then introduces errors at its outputs 
in accordance with the supply voltage by using the probability 
of error values from the error rate characterization of the full 
adder. To model the effect of device noise, we introduce errors 
in the C simulator with the help of the inbuilt random number 
generator in C. A voltage profile, introduced in the previous 
section, along with the error rate characterization of the full 
adder for each voltage is given as input to the simulator. Each 
24-bit input operand represents a mantissa of a floating point 
number. Since these numbers represent mantissas, the most 
significant bit, i.e., the 24th bit for both operands (where the 
LSB is the 1st bit) is fixed as 1 to model the „hidden 1‟ of a 
normalized floating point mantissa. The least significant 23 bits 
are generated randomly with equal chances for each bit to be 
1/0. A model of an array multiplier is developed in C using full 
adders which takes as input two 24-bit numbers and generates 
the 48-bit multiplication result. The binary operands are fed to 
the array multiplier model in the simulator. 

Each full adder in the array multiplier is fed with inputs 
according to the input operands and the outputs of the previous 
gates, depending on the full adder‟s position in the array 
structure of Fig. 2. The generated outputs are propagated to the 
next gates. Errors are generated at each full adder according to 
the supply voltage specified by the voltage profile, and the 
48-bit output is generated. The output is then normalized.  The 
least significant 24 bits of this normalized output are generally 
used for rounding. As the proposed floating point architecture 
does not use any rounding, these bits are not used past 
normalization. The most significant 24 bits of the 48-bit 
normalized output forms the mantissa of the probabilistic 
result. To calculate the error rate of each mantissa bit at the 
output, the probabilistic result needs to be compared with the 



exact multiplication result. To do so, the 24-bit input operands 
are correctly multiplied and rounded, to calculate the exact 
multiplication result. The mantissa of the exact result is then 
compared with the mantissa of the probabilistic result. Please 
note that rounding is done only to calculate the exact result and 
not the probabilistic result. To generate the probability of error 
of each bit at the output, simulations are done for 100K 
samples. These probability values are then fed to the ray 
tracing application, where exact multiplications are replaced by 
probabilistic multiplications and an image is generated by using 
probabilistic multiplications.  

To validate the error rate values generated by the 
C simulator, a comparison is done between a 6-bit array 
multiplier simulated in HSPICE and in the C simulator. The 
comparison was done for 50K samples for each of the three 
low power schemes mentioned in Section IV. Simulation of 
each of the low power schemes took two days on a high end 
machine.  The average inaccuracy in the results generated by 
the C simulator is reported in Table III. The voltage profile 
used for each scheme is shown in Table IV. Note that the total 
number of full adder columns in a 6-bit multiplier is 10. 

TABLE III.  AVERAGE INACCURACY IN C SIMULATOR RESULTS  

Low Power Scheme SLEEP BIVOS BIVOS+SLEEP 

Average Inaccuracy per Output Bit 

when Compared with HSPICE 
4.13% 7.26% 5.29% 

TABLE IV.  VOLTAGE PROFILE FOR 6-BIT SIMULATIONS  

  Sleep(0V) 0.8V 0.9V 1.0V 1.1V 1.2V 

Columns 

(LSB 

- 

MSB) 

SLEEP 1-3 - - - - 4-10 

BIVOS - 1-10 - - - - 

BIVOS 

+SLEEP 
1-3 4 5 6 7 8-10 

B. Energy Characterization 

Depending on the voltage profile, the circuit consumes 

different amounts of energy. The total energy consumed by a 
gate depends on the number of toggles that occur at the gate 

output and the energy consumed per output toggle. We 

calculate, from HSPICE, the energy consumed when the sum 

and the carry output of a full adder toggles. We then calculate 

the total number of toggles that occur in a multiplier using 

Verilog and hence find the total energy consumed in the 

multiplier. This is explained in the following sub sections. 

1) Energy Calculations for Sum and Carry Toggles Using 
HSPICE: The total energy consumed by the full adder can be 
divided into the energy consumed for sum calculation and the 
energy consumed for carry calculation. Fig. 3 shows the 
transistor diagram we use for a 1-bit full adder with A, B, C, 
Sum and Carry as the three inputs and two outputs, 
respectively. We identify the part of the full adder circuit that 
calculates the sum output, shown in Fig. 3 with supply voltage 
named as „VDD_Sum‟, and the part of the full adder circuit 
that calculates the carry output, shown in Fig. 3 with supply 
voltage named as „VDD_Carry‟. We compute the energy 
consumed in each part when the full adder is fed with 50K 
samples in HSPICE. This provides the total energy consumed 
for sum calculation and the total energy consumed for carry 
calculation. The input samples for this experiment were 
generated using random number generation in C, and were fed 
as inputs in HSPICE, keeping uniform distribution of 1/0 at 
each input. During the sample generation, the input samples 
were analyzed to calculate the total number of toggles that will 

be generated by these samples at the sum and the carry output 
of the full adder. We divide the total energy consumed for sum 
calculation by the total number of toggles for sum to get the 
energy consumed per sum toggle. Similarly, we calculate the 
energy consumed per carry toggle. These simulations are done 
for the five stated supply voltages, and a look up table for 
every supply voltage is generated as shown in Table V. Hence, 
for each supply voltage, the energy consumed per sum toggle, 
and the energy consumed per carry toggle are tabulated. We 
assume that energy is consumed only when any output toggles. 
For the 90nm process we use, leakage accounts for 0.1% of 
the energy consumed. For technologies with significant 
leakage, we would need to add static power to our model.  
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Figure 3.   Full Adder Transistor Diagram 

TABLE V.  ENERGY CHARACTERIZATION OF A FULL ADDER 

Supply Voltage 1.2V 1.1V 1.0V 0.9V 0.8V 

Energy consumed per 

sum toggle ( x E-14 Joules) 
5.97 4.90 3.85 2.96 2.24 

Energy consumed per 

carry toggle ( x E-14 Joules) 
7.02 5.80 4.6 3.51 2.68 

2) Energy Calculations for a Multiplier Using Verilog: 
The energy consumed per carry toggle and per sum toggle is 
calculated as explained in the previous section. To calculate 
the energy consumed by a larger circuit (e.g., an array 
multiplier) consisting of full adders, the average number of 
toggles for sum and carry output for each of the full adders in 
the circuit is required. A Verilog description of a 24-bit array 
multiplier was simulated in ALDEC Active-HDL 6.3 [12] and 
its Toggle Coverage feature was used to calculate the toggle 
rate. The number of toggles depends on the input to output 
delays of the full adder. Hence, for each input combination, 
the delays from each input to each output were calculated from 
HSPICE. This was done for all the five voltages considered, 
using the Synopsys 90nm library. Then, corresponding to each 
voltage, the delays were specified in the Verilog description. 
The toggle rate was calculated for each low power scheme, 
given a voltage profile, as the number of toggles is different 
for each scheme. Simulations were done for 50K random 
samples for each low power scheme with uniform distribution 
of 1/0 at each input bit. The calculated toggle rate was then 
multiplied with the energy per toggle values obtained from the 
energy characterization of the full adder, in accordance with 
the voltage profile, to find the total energy consumed by the 
circuit. To verify the energy values generated from toggle 
calculations, a 6-bit array multiplier was simulated in HSPICE 
and in Verilog for each of the low power schemes, for the 
same voltage profile shown in Table IV, and the results were 
compared. The energy consumed was calculated for 50K 
samples and the results are reported in Table VI. The final aim 
of the energy calculations is to compare the performance of 
the low power techniques, i.e., to know how much more/less 



energy is consumed by a particular scheme as compared to the 
other schemes. Assume that simulation of two designs, say A 
and B, in HSPICE states that A consumes X% of the energy 
consumed by B. If the same designs were simulated using 
Verilog and the results show that A consumes X% of the 
energy consumed by B, then the comparisons are correct. 
Hence, instead of matching the actual energy values of A and 
B fom HSPICE and Verilog, we calculate the energy 
consumed by A with respect to B from HSPICE and the 
energy consumed by A with respect to B from Verilog and 
compare that value.  For comparisons of the low power 
schemes, we focus on relative accuracy rather than absolute 
accuracy, i.e., we compare all the schemes simulated in 
HSPICE with respect to one of the scheme simulated in 
HSPICE and calculate the percentage of energy consumed by 
each with respect to that one scheme. Similarly, we compare 
all the schemes simulated in Verilog with respect to one of the 
scheme simulated in Verilog and calculate the percentage of 
energy consumed by each with respect to that one scheme. 
This can be seen as normalization of the values with respect to 
that one scheme. The comparisons can be made with respect to 
any scheme. In Table VI, in the third column, comparisons are 
done for HSPICE and Verilog with respect to their 
corresponding Sleep techniques.  As seen from Table VI, the 
inaccuracy in the Verilog results is under 5%. 

TABLE VI.  ENERGY CALCULATIONS  

Low 

Power 

Scheme 

Energy/sample (J) 

calculated from 

Energy/sample 

calculated with respect 

to the corresponding 

Sleep scheme 

Inaccuracy 

in 

Verilog 

results 
HSPICE VERILOG HSPICE VERILOG 

SLEEP 1.92E-12 1.80E-12 100% 100% - 

BIVOS 9.22E-13 8.45E-13 48.03% 46.93% 2.29% 

BIVOS 

+SLEEP 
1.53E-12 1.37E-12 80.03% 76.45% 4.47% 

C. Ray tracing 

In the implemented ray tracing algorithm [10], single 
precision floating point multiplications account for 54% of the 
total number of arithmetic operations as shown in Fig. 4. Out of 
the total multiplications, around 72% of the multiplications 
were from determinant value calculations for matrices. These 
determinant calculations were of two types. Type 1 calculations 
were used in the algorithm to find the distance to the point of 
intersection. Type 2 calculations were used to find the 
interpolation parameters of the point of intersection. 
Introduction of errors in the type 1 multiplications leads to 
wrong distance calculations. If the distance calculated, using 
probabilistic multiplications, to the point of intersection of the 
ray, yields a result less than the exact distance, the ray falls 
short of the point of intersection. On the other hand, if the 
distance calculated is larger than the actual exact distance, the 
ray goes to a point beyond the actual intersection point. Both of 
these cases may lead to an increase in the number of rays in the 
simulation of light-object interaction. Due to the recursive 
nature of the algorithm, larger numbers of rays cause an 
increase in the total number of operations as compared to the 
case when exact calculations are done. The recursive nature can 
be seen by a loop formation in the flow chart of Fig. 4. 
Introduction of errors in the type 2 calculations only causes a 
displacement in the position of the point of intersection, which 
does not cause any increase in the number of arithmetic 

operations executed by the algorithm. Type 2 operations 
account for 69% of the matrix calculations which is 50% of the 
total number of multiplications. Hence, type 2 multiplications 
which account for 50% of the total single precision floating 
point multiplications were made probabilistic according to the 
low power techniques explained in Section IV. The share of 
various operations shown in Fig. 4 is calculated by simulating 
the ray tracing algorithm for different graphics models such as 
Stanford Bunny, Stanford Dragon and Stanford Armadillo, and 
taking the average value for each operation. These models are 
courtesy of the Stanford Computer Graphics Laboratory. 

 Now we explain how the probability of error generated 
from the C simulator is injected in to the ray tracing algorithm. 
First, the correct multiplication result is calculated. This result 
is then converted into its 32-bit binary representation. Out of 
the 32 bits, the 23 mantissa bits are extracted and errors are 
introduced in the same manner as was done in Section V.A.2 in 
the C simulator. Errors are introduced only in the mantissa of 
the number while the exponent and sign bit calculations are 
error free. This erroneous 23-bit mantissa along with the 8-bit 
exponent and the sign bit of the correct result is converted into 
a floating point number. This number replaces the correct result 
in the ray tracing algorithm executed in C. 

 
Figure 4.   Ray Tracing Algorithm 

VI. SIMULATION AND RESULTS 
For the experiments, we first define an ideal case and a base 

case. The ideal case is taken as the one in which no errors are 
introduced into the multiplications of the ray tracing algorithm. 
Correctly rounded multiplication results are used to generate 
the output in the ideal case. The image generated from the ideal 
case does not have any deliberately introduced errors and is 
called the ideal image. To find out the actual reduction in the 
quality of the image generated from the low power schemes, 
we compare all the generated images with the ideal image to 
have a fair comparison. The base case is considered to be the 
one in which only rounding errors are introduced in the 
multiplier. All the full adders are operated at the nominal 
technology supply voltage of 1.2V. The energy consumed in 
this base case (note this is not the ideal case) is considered to 
be 100% energy. Energy consumed by application of low 
power schemes is compared with respect to the base case. 

 Peak Signal-to-Noise Ratio (PSNR) is used to represent the 
quality of the generated image. The graphics models used in 
the ray tracing algorithm for the experiment are the Stanford 
Bunny, Stanford Dragon and Stanford Armadillo. The results 
were calculated from colored images of resolution 200x200. 
The image generated “looks good” when the PSNR value is 



47dB or greater. The energy consumed using sleep, BIVOS and 
the proposed BIVOS + Sleep technique, for a fixed image 
quality, is shown in Table VII. As mentioned, the energy 
consumed is with respect to the base case. For the 
BIVOS + Sleep case at 38% energy, the voltage profile for the 
full adder columns is shown in Table VIII. A column value of 1 
in Table VIII refers to the least significant full adder column. 
The voltage profile was selected by simulating different voltage 
values for different full adder columns in the C simulator and 
choosing the one which met the requirements of the output 
image quality. Images of the graphics model after ray tracing 
for the ideal case and BIVOS + Sleep at 38% energy are shown 
in Fig. 5. Hence, the results show that an energy savings of 
62% can be achieved in a floating point multiplier by 
application of the proposed BIVOS + Sleep technique. The 
proposed BIVOS + Sleep technique at 38% energy can be 
operated at the same clock frequency as the base case because 
the increase in the delay due to lowering of voltages is 
compensated by a reduction in the critical path as large number 
of lower significant columns are operated in sleep mode.  

TABLE VII.  IMAGE QUALITY VERSUS ENERGY CONSUMPTION 

PSNR(dB) 

Relative to the 

Ideal Image 

Energy Relative to the Base Case 

 BIVOS Sleep 
BIVOS + 

SLEEP 

58 dB 80% 75% 66% 

47 dB 55% 51% 38% 

TABLE VIII.  VOLTAGE PROFILE FOR BIVOS+SLEEP AT 38%  ENERGY  

Voltage Sleep 0.8V 0.9V 1.0V 1.1V 1.2V 

Column 1-22 23-24 25-29 30-33 34-35 36-46 

To calculate the cost of voltage shifters, used for storing the 
results to memory, for bits operated at supply voltage less than 
1.2V (for 90nm technology), we simulated the voltage shifter 
presented in [13] in HSPICE. The total energy consumed by 
voltage shifters was 0.15% of the energy consumed by the 24-
bit multiplier in the base case. The percentage increase in area, 
due to voltage shifters, was around 0.014%. Hence, the cost of 
including voltage shifters, on the overall energy consumption 
and area of the proposed multiplier design, is negligible. 

                                        (a)  Ideal Images 

       
  (b) BIVOS + Sleep at 38% Energy 

       
 (i) Stanford Bunny        (ii) Stanford Armadillo      (iii) Stanford Dragon 

Figure 5.   Images generated using Ray Tracing 

VII. DISCUSSION OF RESULTS 

One of the main reasons that this BIVOS + Sleep technique 
outperforms either the sleep or the BIVOS technique alone for 
a floating point multiplier is that, although the output of the 
24-bit multiplication is 48 bits, the least significant 24 bits after 
normalization contribute merely to rounding and only the most 
significant 24 bits are stored as mantissa. Hence, one can afford 
large errors in the least significant columns which can be 
achieved by putting the full adders to sleep. This is where the 

BIVOS scheme lags as BIVOS will still invest some amount of 
energy in the least significant columns. Moreover, with 
BIVOS, the critical path delay of the multiplier is greater than 
the clock period. The full adder columns just after the columns 
which are in sleep mode have a large amount of error because 
no calculation has been performed prior to that column. So, 
even if we operate the next few columns at the lowest available 
voltage, the new errors generated due to operation at a lower 
voltage are much less than the errors propagated from the 
previous columns in sleep mode. This is where the Sleep 
scheme lags as Sleep will operate the next columns at the 
highest voltage and will have almost the same error rate as the 
case when the columns are operated at a lower voltage. 

VIII. CONCLUSION 
The results show that with the proposed BIVOS + Sleep 

scheme, energy savings of around 62% can be achieved in a 
floating point multiplier. As the low power schemes are applied 
to 50% of the total multiplications of ray tracing algorithm, the 
overall application-level energy savings in the multiplications 
is equal to 31%. This is a significant improvement in energy 
savings achieved by the next best technique, sleep, for the same 
image quality. For our future work we plan to investigate 
alternative multiplier architectures such as Wallace trees. 
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