
Synthesis From Mixed Speci�cationsVincent J. Mooney IIIComputer Systems LabStanford UniversityStanford, CA 94305mooney@aglaia.stanford.edu Claudionor N. Coelho Jr.Dep. de Ciência da Computa�c~aoICEx/UFMGBelo Horizonte, MG, Brazilcoelho@dcc.ufmg.br Toshiyuki Sakamoto�Giovanni De MicheliComputer Systems LabStanford UniversityStanford, CA 94305nanni@stanford.edu* on leave from ToshibaAbstractWe present a hardware synthesis system that acceptssystem-level speci�cations in both Verilog HDL and C.A synchronous semantics is assumed for both languagesin order to guarantee a uniform underlying model. Therationale for mixed input speci�cations is to supporthardware/software co-design by allowing the migrationto hardware of system modules originally described inthe C language.We discuss assumptions and limitations of the inputdescription style, a high-level synthesis system, and theapplication of such a system to some design examples.1. IntroductionHardware/software co-design of embedded systems[1] involves several tasks, some of which are sup-ported by computer-aided design tools. Several ap-proaches have been proposed for the co-synthesis ofhardware/software systems. Their major di�erenceslay in the style for hardware/software speci�cationsand in the latitude that CAD tools have in re�ningthe speci�cations into implementations that best lever-age the features of hardware and software to reach thedesired design objectives.Co-synthesis approaches can be di�erentiated byconsidering the system-level speci�cations, which canbe homogeneous (i.e., in a single speci�cation lan-guage) or heterogeneous (i.e., involving multiple mod-eling paradigms). Hardware/software partitioning is akey problem in co-synthesis from homogeneous speci�-cations. Partitioning determines the components of thesystem that will be implemented as hardware blocks

and software routines. Some implementation objec-tives, such as performance, cost and programmabilitydepend heavily on the partitioning choice.Previous work on hardware/software partitioningaddressed various facets of the problem. The Cosymasynthesis tool suite [2] partitions a system speci�ca-tion to accelerate software execution by using a dedi-cated hardware co-processor (to be synthesized). Theoriginal system model is described as a software pro-gram in an extension of the C programming language.The system model is compiled into a control/data-
ow graph and a partitioning algorithm identi�es thecomputational bottlenecks which are implemented asapplication-speci�c hardware. The Vulcan synthesistool suite [3, 4, 5] uses instead a hardware model ofthe system (in the HardwareC language) and attemptsto reduce the cost of a full-hardware implementationby transferring non-critical operations to routines exe-cuting on a standard processor or processor core. Thesystem model is again compiled into a control/data-
ow graph, which is partitioned yielding: (i) a setof software threads to be compiled and executed onthe standard processor and (ii) the speci�cation of theremaining hardware circuits, that can be synthesizedas a netlist of logic gates. Hardware/software syn-chronization units for interfacing the processor to theapplication-speci�c logic are also automatically gener-ated [3, 5, 6]. Both Cosyma and Vulcan partitionthe system speci�cation with a �ne granularity, i.e.,partition blocks are sets of operations. Conversely,the Co-SAW tool suite [7] partitions systems with acoarse granularity, i.e., blocks correspond to processes.Whereas some optimality is lost in using a coarse gran-ularity in partitioning, the resulting implementationis often closer to what designers expect, and inter-facing hardware to software blocks is easier. Overall,cost/performance estimation of a partitioned imple-

mentation remains the key obstacle to surmount withinpartitioning, because it a�ects the partitioning choicesand the �nal quality of the solution.System designs that are modeled by heterogeneousspeci�cations are often already partitioned into mod-ules, each one described in the paradigm that best suitsits nature. In this case, the hardware/software bound-ary is often predetermined, and co-synthesis does notinvolve a partitioning step. On the other hand, soft-ware/hardwaremigration (and vice versa) is applicableto heterogeneous speci�cations. Thus, software blocksspeci�ed in programming language can be implementedin hardware, using an appropriate hardware synthesispath. Similarly, software routines can be synthesizedfrom hardware blocks.Examples of co-design systems that use heteroge-neous speci�cations are Ptolemy [8], Siera [9] andCoWARE [10]. Ptolemy is an environment and sim-ulator for highly heterogeneous systems, Siera is aprototyping environment and CoWARE is a designsystem for embedded telecommunication applications.For example, CoWARE supports inputs in C, VHDL,and DFL [11] (a data-
ow language), with VHDL andDFL mapped to hardware while the C code is compiledonto a DSP processor [10].We consider here the hardware synthesis compo-nent of a co-design environment, where a heterogeneousspeci�cation paradigm is used. Namely, system-levelspeci�cations in Verilog HDL and in C are supportedas well as their synthesis into logic gates. We assume asynchronous semantics for both Verilog and C, so thatthe underlying model of computation is the same, andwe subset both languages to support only synthesizableconstructs.Our synthesis system, called Parnassus synthesissystem, targets control-dominated applications, andleverages previous research on modeling hardware us-ing control-
ow expressions (CFEs) [12, 13]. In Par-nassus, CFEs represent an intermediate model appli-cable to both Verilog modules and C programs, thatcaptures the global control-
ow information in the sys-tem. Parnassus converts the input speci�cations intoCFEs, and then synthesizes the corresponding data-path and control-unit.Parnassus di�ers from other hardware synthesissystems in that it supports input speci�cations in aHDL and in a programming language. Since manyhardware circuits are often modeled in C for fast eval-uation or prototyping reasons, our system favors themigration of software models to hardware circuits.The rest of the paper is organized as follows. Section2 describes brie
y the organization of the Parnassussystem. Section 3 describes the assumptions and limi-

tations of the input modeling style. Section 4 presentsthe control and data-path synthesis tools while Section5 gives some experimental results and presents an ex-ample in detail.2. Parnassus
C Verilog

SIF++

Calliope Urania

Thalia

Constraints

Clio

Control unit
Synthesis

Datapath
Generator

SLIF

D/C−flow

Logic model

Figure 1. Block diagram of Parnassus Synthe-
sis SystemThe Parnassus synthesis system consists of a setof tools, whose names recall those of the muses inhab-iting the Parnassus mountain. The systems has twofront-ends, called Calliope and Urania, which parseC programs and Verilog models respectively. Thesetwo tools extract information about the system beingdesigned and store the data-
ow and control-
ow in-formation in an intermediate format called SIF++.Parnassus targets the design of concurrent sys-tems, where synchronization and control-
ow is of pri-mary concern. (Some examples of the class of circuitsthat we consider are protocols for cache coherency ornetwork communication.) For this reason, Parnassussynthesizes the control-unit separately from the data-path, by means of tools Thalia and Clio respectively.The output of these tools is a logic-level description inthe SLIF format, which can be mapped to a speci�clibrary by standard tools.

3. ModelingParnassus supports inputs in Verilog and C andthus digital systems can be modeled at di�erent lev-els of detail, spanning the range from structural bit-oriented hardware descriptions all the way up to be-havioral word-oriented software representations.This approach matches design practice, where de-signers often describe their systems in a heteroge-neous way, using description languages appropriate tothe subsystem being implemented. Models in the Cprogramming language are sometimes early functionalmodels of hardware, whose automated synthesis re-duces greatly the design time. Otherwise, C modelsmay be software routines that designers decide to im-plement in hardware at a later stage. Parnassus sup-ports the combined synthesis of Verilog and C models,even though none of its tools at the moment suggeststhe choice of a software or hardware implementation.
3.1. Modeling assumptions and limitationsDespite the di�erent natures of Verilog and C, we re-quire descriptions in either language to have the sameunderlying model of computation. This allows us toconstruct synthesis tools from the same intermediateform derived from both languages. We assume a syn-chronous operation. For the sake of simplicity, we con-sider a single clock. Data-
ow is modeled by assign-ment in both languages, and abstracted as operationsand dependencies. Operations, or groups of operations,take an integer number of cycles (possibly unbounded)to execute. Branching decisions are taken instanta-neously, and iterations take also an integer number ofcycles (possibly zero or unbounded).The control-
ow of the system being modeled is ab-stracted as a set of expressions, called CFEs [12], repre-senting the serial/parallel
ow of computation, branch-ing, iteration, synchronization and exceptions. Suchexpressions have a deterministic �nite-state machine(FSM) semantics, and can be compiled into speci�ca-tion FSMs representing the possible control-
ow imple-mentations.In order to be able to reduce Verilog and C to thiscommon data-
ow and control model, some restrictionsmust be placed on the constructs that can be used,which will be detailed in the next sections. We alsowant to keep some correspondence between C and Ver-ilog models. Thus, we use the notion of a C process,which is a procedure equivalent to a Verilog module. AC function is made equivalent to a Verilog function, byallowing one return value and prohibiting pass by ref-erence in the arguments to the function call. Finally, a

procedure call in C is equivalent to a Verilog task. Thiscorrespondence is displayed in Figure 2.
C Verilog

process module

function

task

function
(one output,
no pass by ref.)

procedure call

Figure 2. Correspondence between C and Ver-
ilog models3.1.1 Verilog assumptionsWe assume the Verilog code to be speci�ed using one ofthree
avors: behavioral style, combinational style orstructural style. These styles re
ect current method-ologies used by designers.The behavioral style allows us to model single clocksynchronous designs. In this style, we ignore the exacttiming of the operations in Verilog, since this timingwill depend on the particular component library chosenin datapath and logic synthesis.Verilog reg variables in behavioral style hold theirvalues once set, and so behave like latched outputs.All operations have their results placed in registers,including assignments to output ports. Thus, responsesto external events cannot occur until the next cycle.We implement a restricted form of the Verilog dis-able construct, where a process can only disable pro-cesses in its hierarchy.The combinational style allows us to specify blocksof combinational logic. It assumes that all inputs to thelogic appear in the sensitivity list of the logic blocks.Such blocks are presumed to �nish their computationby the next clock cycle. We do not allow the same vari-able to appear in both the left and the right hand sidesof a combinational logic; e.g., statement b = b + a; isdisallowed. (Note that this is allowed in the behavioralstyle).The structural style is used to specify the block di-agram of the system to be synthesized. It assumes the

usual Verilog declarative semantics for structures.3.1.2 C assumptionsWe implement a subset of C as input to Parnassus.All control-
ow constructs are supported (continue,if-else, while, for, break, and switch-case).Recursive functions and goto are not supported. Wealso do not support pointer manipulation or dynamicmemory allocation at present (note that the systemdescribed in [15] does support some limited dynamicmemory allocation).
3.2. Constraints and non-determinismParnassus supports the speci�cation of constraintson hardware resources, on synchronization and on op-eration timing. Timing constraints can be used to seri-alize operations that have no data-
ow dependenciesand to model output events with the desired wave-forms.Multiple facets of a design implementation can becaptured by means of decision variables, that can beused as switches among di�erent implementation op-tions. For example, modeling communication betweentwo circuits may be achieved via a FIFO or via a mem-ory. Both paths can be speci�ed, and the implementa-tion can be chosen during synthesis based on the valueof the desired design objective.4. Synthesis
4.1. Thalia Control Unit GenerationSynthesis of control units is divided into two phases.In the �rst phase, the control-
ow input graph is trans-lated into the algebraic representation of control-
owexpressions [12]. This is performed by a traversal ofthe SIF++ control-
ow graph. The CFE representa-tion is augmented with the design constraints. CFEsabstract also the behavior of the circuit environment,as a constraint on its implementation.Thalia converts the CFE model to a �nite-statemachine representation, by manipulating the deriva-tives [12] of the CFEs, which model the global systemstates. Thalia next analyzes the �nite-state systemmodel, where the unreachable states violating synchro-nization constraints are eliminated. If the resultingmachine is empty, then the system model is overcon-strained. Otherwise, Thalia statically schedules oper-ations in basic blocks such that the �nal implementa-tion satis�es the desired constraints. Non-determinism

in the original speci�cation is resolved during the syn-thesis of control-units by selecting a deterministic im-plementation that optimizes the design goals.Thalia �nally outputs a controller �nite-state ma-chine in SLIF format and the constraints for the data-path generator in KISS format.
4.2. Clio Datapath GenerationClio implements a straightforward datapath gener-ator. The input to Clio is the SIF++ intermediateform and the KISS �le generated by Thalia, contain-ing the control information. Clio takes also as in-put a library of functions, such as ALUs, multiplexers,shifters, etc., which are used as datapath components.Registers are inserted to ensure correct timing betweendata input and output as speci�ed by the constraintscontained in the KISS �le generate by Thalia. Theoutput of Clio is a SLIF �le. Since the control-unitgeneration and datapath generation are handled sep-arately in Parnassus, both SLIF �les they generateare needed for logic synthesis. For library binding, wehave used Ceres [16] with a standard library �le, suchas the LSI Logic 10k library.5. Example and experimental resultsIn this section, we present an example of how adesign can be successfully synthesized using the sys-tem described in the previous sections. We consider acontrol-dominated design containing concurrent mod-els, communication, and complex interface constraintsand show how it can be speci�ed and synthesized inParnassus.For our example, we consider the transmission blockof an ethernet co-processor, one which uses registervariables to encode the di�erent states of the protocol.The block diagram of the transmission block is shownin the context of the entire ethernet co-processor inFigure 3. The co-processor contains three units: an ex-ecution unit, a reception unit and a transmission unit.The transmission protocol executes concurrently andinteracts through data transfers and synchronization.Thus, our example explores ethernet co-processor syn-chronization.The transmission unit for DMA frame transmissionis modeled by three concurrent processes, known re-spectively as dma xmit, xmit frame and xmit bit. Pro-cess dma xmit initiates a transmission by sending datato xmit frame which includes the source and destina-tion addresses of the DMA transfer. Then xmit frameappends the appropriate header and tail information,such as the preamble, start frame delimiter, and parity

Host
CPU

Memory

System
Bus

DMA−XMIT XMIT−FRAME XMIT−BIT
TXD

TXE

Receive Unit

Transmit Unit

Execute Unit

Network Coprocessor

Figure 3. Ethernet co-processor transmission
block diagrambits. Upon receiving a byte from process xmit frame,xmit bit sends the corresponding bit stream over theline TXD. Thus, xmit bit must receive each byte eightcycles apart, which constrains the rate at which thebytes are transmitted from xmit frame. In our exam-ple, we specify dma xmit in Verilog, xmit frame in Cand xmit bit in Verilog.Process xmit frame was speci�ed as a program statemachine as seen in Figure 4. Because we have to abortthe transmission of a frame if CCT becomes true, weimplemented the program state machine with a whileloop which pools signal CCT, and a case statement onvariable state, which determines the next state of theprogram state machine to be executed. Note that thisstate variable is not part of data
ow and it should beincorporated into the control-unit for xmit frame [13].Calliope translates the C speci�cation of xmit frameto SIF++. ThenThalia extracts the control
ow fromthe SIF++ intermediate representation so as to includevariable state in the synthesized controller. Processesdma xmit and xmit bit were both input to the Par-nassus system using Urania. All of the processeshad Clio generate the datapath.Table 1 presents the results for the synthesis ofdma xmit, xmit frame, and xmit bit. In Table 1, thesecond column shows the number of lines of C the spec-i�cation required, while the third column shows thenumber of lines of Verilog. Finally, the last columnshows the number of gate equivalents the hardware re-quired using the LSI Logic library.We simulated the transmission unit using the logic

CCT’

CCT’

CCT’

CCT’

CCT’

CCT’

discon_b = 0;
xmitidle = 1;
wait (txstart);
xmitidle = 0;
wait(DMAxmit);

st = ‘PREAMBLE;
counter = 1;
parity = 8’hff;

ether_xmit = preamble;
txrestart = 0;
discon_b = 1;
if (counter < npreamble)
 counter = counter + 1;
else
 state = SFD;

ether_xmit = sfd;
b = DMAxmit;
state = DEST1;

ether_xmit = b;
parity = parity ^ b;
b = DMAxmit;
state = DEST2;

ether_xmit = b;
parity = parity ^ b;
b = DMAxmit;
if (counter < length)
 counter = counter + 1;
else
 state = DATAEND;

Figure 4. Program state machine for processxmit framesimulator Mercury of the Olympus system. The re-sulting waveform with a particular test pattern can beseen in Figure 5. Signal xmit contains the upper andlower bytes alternately of the source address for DMAtransmission, while Baddr contains the destination ad-dress. Signal xmit byte contains the data bytes to betransferred, which are placed serially on TXD. TXE is anenable signal.6. ConclusionThe Parnassus system allows designers to performsystem-level design from a multiple-paradigm inputperspective. We have shown how one can synthesizesynchronous control-dominated designs speci�ed at ahigh level in C and Verilog. We have utilized themethodology of control-
ow expressions to synthesizethe control portion of control-dominated speci�cations.Some assumptions were necessary to guarantee a syn-

Process # Lines C # Lines Verilog Areadma-xmit 190 5552xmit-frame 213 6218xmit-bit 45 532
Table 1. Results for the synthesis of the trans-
mission unit

Figure 5. Waveform Display of Synthesized
Transmission Unitchronous semantics for both Verilog and C; such con-ditions preserve common underlying model for both.Thus, the system potentially allows designers to mi-grate their code from one language domain to anotheras they further re�ne their system implementation.AcknowledgementsThis research was sponsored by ARPA, under grant No.DABT63-95-C-0049.References[1] G. De Micheli and M. Sami, editors, Hardware/SoftwareCo-Design, Kluwer Academic Publishers, Norwell, MA,1996.

[2] J. Henkel, Th. Benner, R. Ernst, W. Ye, N. Sera�movand G. Glawe, \COSYMA: A Software-Oriented Ap-proach to Hardware/Software Co-design," The Journalof Computer and Software Engineering, Vol. 2, No. 3,pp. 293-314, 1994.[3] R. K. Gupta, Co-Synthesis of Hardware and Softwarefor Digital Embedded Systems, Kluwer Academic Pub-lishers, Boston, MA, 1995.[4] R. Gupta, C. Coelho, and G. De Micheli, \Synthesis andSimulation of Digital Systems Containing InteractingHardware and Software Components," Proceedings ofthe 29th Design Automation Conference, pp. 225-230,June 1992.[5] R. Gupta and G. De Micheli, \Hardware-SoftwareCosynthesis for Digital Systems," IEEE Design & Testof Computers, pp. 29-41, September 1993.[6] R. Gupta and G. De Micheli, \Program Implementa-tion Schemes for Hardware-Software Systems," IEEEComputer, Vol. 27, No. 1, pp. 48-55, January 1994.[7] Jay K. Adams and Donald E. Thomas, \Multiple-Process Behavioral Synthesis for Mixed Hardware-Software Systems," International Symposium on Sys-tem Synthesis, pp. 10-15, September 1995.[8] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,\Ptolemy: A Framework for Simulating and Prototyp-ing Heterogeneous Systems," International Journal onComputer Simulation, Vol. 4, pp. 155-182, April, 1994.[9] M. B. Srivastava and R. W. Broderson, \Rapid-Prototyping of Hardware and Software in a Uni�edFramework," Proceedings of the IEEE InternationalConference on Computer-Aided Design, pp. 152-155,1991.[10] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S.Vercauteren, and D. Verkest, \Co-design of DSP Sys-tems," in G. De Micheli and M. Sami, editors, Hard-ware/Software Co-Design, pp. 75-104, Kluwer Aca-demic Publishers, Norwell, MA, 1996.[11] P. Willekens, et. al., \Algorithm Speci�cation in DSPStation using Data Flow Language," DSP Applications,pp. 8-16, January 1994.[12] C. N. Coelho Jr. and G. De Micheli, \Analysis andSynthesis of Concurrent Digital Circuits Using Control-Flow Expressions," IEEE Transactions on CAD/ICAS,(to appear), and Technical Report CSL-TR-96-694,http://elib.stanford.edu/Dienst/UI/2.0/Describe/stan-ford.cs%2fCSL-TR-96-694, Stanford, CA, April, 1996.[13] C. N. Coelho Jr., Analysis and Synthesis of Concur-rent Digital Systems Using Control-Flow Expressions,Ph.D. Thesis, Technical Report CSL-TR-96-690,http://elib.stanford.edu/Dienst/UI/2.0/Describe/stan-ford.cs%2fCSL-TR-96-690, Stanford, CA, March, 1996.[14] Verilog-XL Reference Manual, Version 1.6, 1991.[15] G. de Jong, B. Lin, C. Verdonck, S. Wuytack and F.Catthoor, \Background Memory Management for Dy-namic Data Structure Intensive Processing Systems,"Proceedings of the IEEE International Conference onComputer-Aided Design, pp. 515-520, November 1995.[16] G. De Micheli, D. Ku, F. Mailhot, T. Truong, \TheOlympus Synthesis System," IEEE Design & Test ofComputers, pp. 37-53, October 1990.

