
Introduction/Overview of Lab 1
ECE 4156/6156 Advanced Hardware‐ 

Oriented Security and Trust
Spring 2024

Assoc. Prof. Vincent John Mooney III 
Georgia Institute of Technology

©Georgia Institute of Technology, 2018‐2024 1



2

Lab 1 is Assigned and is Due on Jan. 26th

• Check out course web page
• http://mooney.gatech.edu/Courses/ECE4156/

• Look under “Homeworks/Labs/Exams”
• http://mooney.gatech.edu/Courses/ECE4156/hwlabexam/index.html

• Lab2 will be posted in two weeks, approximately

©Georgia Institute of Technology, 2018‐2024



3

Prelab
Simulating, Synthesizing and Implementing a Secure 

Hash Algorithm using ModelSim and Quartus

©Georgia Institute of Technology, 2018‐2024



DE-10 Board Contents
Note: the Quick Start Guide may be 
missing, but this is not needed as the 
document is available online.



5

Simulating SHA256 Using ModelSim

• The Secure Hash Algorithm (SHA) is a cryptographic hash function 
used to map data of arbitrary size into a fixed size and is designed to 
be a one‐way function

• In this lab, we will first simulate and functionally verify a VHDL 
implementation of SHA256

• We will learn how to create a VHDL testbench to perform the 
simulation by

• Generating clock and reset signals
• Issuing input stimulus and checking for expected output

• We will verify the correct operation of the hardware implementation 
of the SHA256 by comparing the results to a software implementation

©Georgia Institute of Technology, 2018‐2024



6

Synthesizing and Implementing SHA256 
Targeting an Intel FPGA

• We will synthesize the SHA256 top level module along with all the 
submodules needed to implement the algorithm

• We will also implement and map the design to an Intel FPGA
• SPOILER ALERT! Some of the steps might generate some errors

• You will be asked to identify those errors and provide a hypothesis as to why 
you think these errors are happening

• Do not worry YET! You will not be asked to solve these problems in this lab

©Georgia Institute of Technology, 2018‐2024



©Georgia Institute of Technology, 2018‐2023 7

Prelab Outcome

• Learn VHDL as you go
• VHDL basics (entities, architectures, …)
• VHDL testbenches
• Note: VHDL is NOT a software language. If you are unfamiliar with VHDL, try 

to approach VHDL without bringing any assumptions from how software 
functions.

• Learn how to simulate a hardware design using Mentor Graphics 
ModelSim to check for correct module behavior

• Monitoring specific signals in a design and exporting signal waveforms
• Checking for correct results of specific test cases

• Learn how to synthesize and implement a hardware design targeting 
FPGAs using Quartus

• Monitoring resource utilization results
• Analysis of possible synthesis and implementation errors



Linux command : sha256sum

Sha256 ‐‐help

8©Georgia Institute of Technology, 2018‐2024



Linux command : sha256sum
1. Create a text file with your input (I call it “test_vector1.txt”)

• without spaces or next‐line character
• Content of text file is “c98c8e55”

2. Generate a binary file using your text file as input
• “xxd –r –p test_vector1.txt > test_vector1.bin”

3. Run sha256sum
• “sha256sum –b test_vector1.bin”

9©Georgia Institute of Technology, 2018‐2024



Windows command : Get-FileHash

• Same .bin file as previous slide
• There is no “xxd” command in windows
• Probably easiest to just use the linux commands

10©Georgia Institute of Technology, 2018‐2024



11

Lab 1
SHA256 VHDL Code Modification

©Georgia Institute of Technology, 2018‐2024



12

Fixing Errors in Synthesis and Implementation

• In this lab, you will be given a VHDL code that contains some errors
• You will be tasked to identify possible design problems by

• Issuing specific test cases to test for correct functionality
• Synthesizing the design using specific timing constraints
• Implementing the design using specific resource constraints

• You will then be tasked to resolve the problems that arose during the 
simulation, synthesis and implementation of the target design

• VHDL code modifications to fix
• Possible timing violations
• Unacceptable resource utilization
• Functional errors

©Georgia Institute of Technology, 2018‐2024



13

SHA-256 VHDL Design Hierarchy

• To better understand a design, you have to first understand how the 
modules and submodules interact together

• SHA 256 hierarchy:
• gv_sha256.vhd

• sha256_control.vhd
• sha256_padding.vhd
• sha256_msg_sch.vhd
• sha256_hash_core.vhd
• sha256_regs.vhd
• sha256_Kt_rom.vhd
• sha256_Ki_rom.vhd

©Georgia Institute of Technology, 2018‐2024



DE-10 FPGA Development Board

• FPGA has a limited number of I/O 
pins

• Check the number of I/O pins 
required by our current top level 
design

• The DE‐10 FPGA has a total of 288 
pins, only!

• Thus the current SHA‐256 design 
cannot be implemented as is on the 
FPGA or else some of the module’s 
inputs and outputs won’t be mapped 
to pins

14©Georgia Institute of Technology, 2018‐2024



hash_checker

Solve I/O Utilization Problem

gv_sha256 result_comp

gv_sha256

*Note that the number of I/O pins in 
the pictures are not accurate 
representation of the actual design

Lab 1

15

Lab 2

©Georgia Institute of Technology, 2018‐2024



16

Control Assumes a Certain Behavior

• Passing incorrect signal values at unexpected time instances could 
cause errors

• Testbench cases in PreLab have some errors that are fixed for you
• In Lab 1, the testbench will have some errors in feeding the input test 

cases
• You will have to fix the timing now!
• HINTS

• Look through the sha256_control.vhd file for expected behavior
• It’s true that a picture is worth a thousand words, but it might be also true 

that a few words are worth a thousand lines of code!

©Georgia Institute of Technology, 2018‐2024


