Introduction/Overview of Lab 1

ECE 4156/6156 Advanced Hardware-

Oriented Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney Il

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024



Lab 1 is Assigned and is Due on Jan. 26th

* Check out course web page
* http://mooney.gatech.edu/Courses/ECE4156/

* Look under “Homeworks/Labs/Exams”
e http://mooney.gatech.edu/Courses/ECE4156/hwlabexam/index.html

* Lab2 will be posted in two weeks, approximately




Prelab

Simulating, Synthesizing and Implementing a Secure
Hash Algorithm using ModelSim and Quartus



DE-10 Board Contents

Note: the Quick Start Guide may be
missing, but this is not needed as the
document is available online.

1. DE10-Nano Board

2. DE10-Nano Quick Start Guide
3. Type A to Mini-B USB Cable x1
4. Type A to Micro-B USB Cable x1
5. Power DC Adapter (5V)




Simulating SHA256 Using ModelSim

* The Secure Hash Algorithm (SHA) is a cryptographic hash function
used to map data of arbitrary size into a fixed size and is designed to
be a one-way function

* In this lab, we will first simulate and functionally verify a VHDL
implementation of SHA256

* We will learn how to create a VHDL testbench to perform the
simulation by
* Generating clock and reset signals
* |ssuing input stimulus and checking for expected output

* We will verify the correct operation of the hardware implementation
of the SHA256 by comparing the results to a software implementation



Synthesizing and Implementing SHA256
Targeting an Intel FPGA

* We will synthesize the SHA256 top level module along with all the
submodules needed to implement the algorithm

* We will also implement and map the design to an Intel FPGA

* SPOILER ALERT! Some of the steps might generate some errors

* You will be asked to identify those errors and provide a hypothesis as to why
you think these errors are happening

* Do not worry YET! You will not be asked to solve these problems in this lab



Prelab Outcome

* Learn VHDL as you go
* VHDL basics (entities, architectures, ...)
* VHDL testbenches

* Note: VHDL is NOT a software language. If you are unfamiliar with VHDL, try
to approach VHDL without bringing any assumptions from how software
functions.

* Learn how to simulate a hardware design using Mentor Graphics
ModelSim to check for correct module behavior
* Monitoring specific signals in a design and exporting signal waveforms
* Checking for correct results of specific test cases

e Learn how to synthesize and implement a hardware design targeting
FPGAs using Quartus
* Monitoring resource utilization results
* Analysis of possible synthesis and implementation errors



Linux command : sha256sum

ychendl4@e [inlabsrvel.ece.gatech.edu=sha25s
Sha256 __hel Usage: sha256sum [OPTION]... [FILE]..
F) Print or check SHA256 i256—b1t) checksums .
With no FILE, or when FILE 1is -, read standard input.

-b, --binary read in binary mode
-¢, --check read SHAZ256 sums from the FILEs and check them
create a BSD-style checksum
read 1n text mode (default)
Note: There i1s no difference between binary and text mode option on GNU system.

The following four options are useful only when verifying checksums:
--guiet don't print OK for each s fully verified file
--status don't output anything, status code shows su 5
--strict exit non-zero for 1 Ly formatted checksum lines
-W, --warn warn about 1 formatted checksum lines

--help display this help and exit
--version output version information and exit

The sums are computed as described in FIPS-180-2. When checking, the input
should be a former output of this program. The default mode 1s to print

a line with checksum, a character indicating input mede ('*' for binary,
space for text), and name for each FILE.

GNU coreutils online help: <http://www.gnu. orggzoftware,coreutlle,
For complete documentation, run: info coreutils 'sha256sum 1invocation'




Linux command : sha256sum

1. Create a text file with your input (I call it “test_vectorl.txt”)
* without spaces or next-line character
* Content of text file is “c98c8e55”

2. Generate a binary file using your text file as input
e “xxd —r —p test_vectorl.txt > test_vectorl.bin”

3. Run sha256sum
e “sha256sum —b test_vectorl.bin”

ychendld4@ece-linlabsrvBl.ece.gatech.edu>xxd -r -p test vectorl.txt > test vectorl.bin
ychen4l4@ece-linlabsrvel.ece.gatech.edu=1ls

test vectorl.bin test vectorl.txt

ychend4l4@ece-linlabsrvel.ece.gatech.edu>sha256sum -b test

test_vectorl.bin test_vectorl.txt _
ychen4l4@ece-linlabsrvel.ece.gatech.edu>sha256sum -b test vectorl.bin _
7Jabc22cfae5af26ce93dbb94433a0e0b2e119d014f8e7f65bd56c61ccccd9S04 *test vectorl.ban




Windows command : Get-FileHash

e Same .bin file as previous slide
* There is no “xxd” command in windows
* Probably easiest to just use the linux commands

PS C:\Users\K\Desktop> Get-FileHash test_vector.bin

Hash Path

JABC22CBAESAF26CES3DEE344353ABEGE2E1190814FBEVFROBD506CR1CCCCDO584 C:\Users\K\Desktop\test_wector.bin

©Georgia Institute of Technology, 2018-2024

10



Lab 1

SHA256 VHDL Code Modification



Fixing Errors in Synthesis and Implementation

* In this lab, you will be given a VHDL code that contains some errors

* You will be tasked to identify possible design problems by
* |ssuing specific test cases to test for correct functionality
* Synthesizing the design using specific timing constraints
* Implementing the design using specific resource constraints

* You will then be tasked to resolve the problems that arose during the
simulation, synthesis and implementation of the target design

* VHDL code modifications to fix
* Possible timing violations
* Unacceptable resource utilization
* Functional errors



SHA-256 VHDL Design Hierarchy

* To better understand a design, you have to first understand how the
modules and submodules interact together

* SHA 256 hierarchy:

* gv_sha256.vhd
* sha256_control.vhd
* sha256_padding.vhd
* sha256_msg sch.vhd
* sha256_hash_core.vhd
* sha256_regs.vhd
* sha256_Kt_rom.vhd
* sha256_Ki_rom.vhd



DE-10 FPGA Development Board

* FPGA has a limited number of I/O
pins
* Check the number of |/O pins

required by our current top level
design

* The DE-10 FPGA has a total of 288
pins, only!

* Thus the current SHA-256 design
cannot be implemented as is on the
FPGA or else some of the module’s
inputs and outputs won’t be mapped
to pins

14

©Georgia Institute of Technology, 2018-2024



Solve I/0O Utilization Problem

Lab 1

gv_sha256

*Note that the number of 1/0 pins in
the pictures are not accurate
representation of the actual design

Lab 2

hash_checker

gv_sha256

©Georgia Institute of Technology, 2018-2024



Control Assumes a Certain Behavior

* Passing incorrect signal values at unexpected time instances could
cause errors

* Testbench cases in PreLab have some errors that are fixed for you

* In Lab 1, the testbench will have some errors in feeding the input test
cases

* You will have to fix the timing now!

* HINTS

* Look through the sha256_control.vhd file for expected behavior

* It’s true that a picture is worth a thousand words, but it might be also true
that a few words are worth a thousand lines of code!



