
HOST Physical Unclonable Functions I ECE 525

Introduction
We discussed the basic tenets of information security, including confidentiality, data
integrity, authentication and non-repudiation

Algorithms have been developed that provide these security functions, including

unkeyed hash functions, block ciphers, MACs and digital signatures

These algorithms assume a black box implementation, where users can only interact

with the algorithm through its inputs and outputs

The following assumptions are often made (from Maes text):
• Secure key generation: A secure, i.e., random, unique and unpredictable, key

can be generated for security primitives such as block ciphers

• Secure key storage: The key can be stored and retrieved by the instantiation

with- out being revealed

• Secure execution: The instantiation of the primitive can execute without

revealing any information about the key or internal intermediate results

And without an adversary being able to influence the internal execution

ECE UNM 1 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

Introduction
Unfortunately, these assumptions are no longer true and physical layer countermea-
sures are now needed

For example, secure key storage requires specialized technology to provide secure

NVMs, but recent work shows that even these are vulnerable

Similarly, secure execution requires special design techniques to thwart side-channel

attacks

Physical layer security is implemented using primitives and methods including:
• True Random Number Generators (TRNGs): Distillation of random

numbers from physical random sources for protocols and algorithms

• Design Styles: Implementations that minimize and ideally eliminate certain

physi- cal side channels leakages and vulnerabilities

• Physical Unclonable Functions (PUFs): Primitives that produce

unpredictable, reliable and instance-specific bitstrings, without the need for

NVM

ECE UNM 2 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

Introduction
PUF definition: An inherent and unclonable instance-specific feature of a physical
object

Akin to biometric features in humans, such as fingerprints, iris characteristics and

DNA

PUF Constructions: What do they look like and what do they leverage?

PUFs take advantage of technical limitations that exist in the physical process of fab-

ricating integrated circuits

ECE UNM 3 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Constructions
Even with extreme control over a fabrication process, no two physically identical
instances of a chip can be created b/c of random and uncontrollable effects

The differences are typically very small, i.e., they exist at the nanometer scale, and

require high-precision techniques to measure them

A PUF is defined as a combination of
• A physical source of randomness (Entropy), i.e., an integrated circuit

component that exhibits within-die variations

• A measurement technique that can convert small analog signal differences

intro- duced by chip-to-chip/within-die variations into unique digital bitstrings

Variations refer to geometrical and chemical imperfections that exist in nanometer-

sized components on the chip

Makes multiple designer-drawn exact replicas of a component slightly different

These physical imperfections manifest as changes in the electrical characteristics of

the component, which is typically what the PUF measurement technique targets

ECE UNM 4 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Constructions
The number of proposed PUF constructions has increased exponentially

This has occurred because of the vast array of opportunities that exist to con-

struct/configure IC functional components as the source of entropy

Our focus will be on intrinsic PUFs
Intrinsic PUFs are defined as those that include both an entropy source and an
on-chip measurement method to produce digital bitstrings

A simple example: SRAM:

word line

VDD

bit bit

Symmetric
and
identical
as
drawn

ECE UNM 5 (1/27/18)

Randomly
powers up
as a 0 or 1

0 1

HOST Physical Unclonable Functions I ECE 525

PUF Constructions
We will use the following notations (from Maes text) in reference to PUFs and their
properties:

• PUF Class: A PUF class will be denoted by P, which includes a complete

descrip- tion of a particular PUF construction type

P.Create is a creation procedure used to create instances of P, which refers to the

detailed physical fabrication processes used to build an instance of a PUF

P.Create(rc), with rc $ 0 1* , refers to the probabilistic nature of the PUF

creation process

• PUF Instance: A PUF instance created from class P will be referred to as

puf As we will see, most PUF constructions (classes) accept inputs, called

challenges, that configure the PUF in a specific state x

Therefore puf(x) refers to the application of challenge x to a PUF instance puf

The set of all possible challenges for class P is denoted P

ECE UNM 6 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Constructions
• PUF Evaluation: The evaluation of a PUF is referred to as puf.Eval

Evaluation produces a quantitative outcome, i.e., a response, which depends on

the state x (the challenge)

puf(x).Eval represents a probabilistic response of puf under challenge x

The set of all possible responses is referred to as P

Note that the instance-specific response of a PUF is affected by
• Fixed within-die variations that occur within the embedding chip
• Environmental conditions, e.g., temperature and supply voltage
• Slow changes in transistor parameters over time, wear-out effects

Environment conditions are denoted by as puf(x).Eval

The PUF response is generally considered a random variable with a characteristic
probability distribution

The distribution is typically determined from simulation or hardware experiments for

a given PUF class P

ECE UNM 7 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Constructions
A statistical analysis of a PUF response is typically composed of three components
(or dimensions):

• Responses from different PUF instances, i.e., different chips (uniqueness)

• Responses from the same PUF instance using different challenges (randomness)

• Responses from the same PUF instance using the same challenges but under

differ- ent conditions (reliability)

Definition: An (Npuf, Nchal, Nmeas)-experiment on a PUF class P is an array of PUF

responses of size Npuf x Nchal x Nmeas

Npuf refers to the number of PUF instances (chips)

Nchal refers to the number of challenges (each producing 1 response bit)

Nmeas refers to the number of evaluations (samples)

ECE UNM 8 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Reliability
As mentioned earlier, PUF responses are affected by environmental conditions

Beyond temperature and supply voltage variations, measurement noise also

introduces changes in a PUF’s response

This fact makes a PUF a probabilistic function (as opposed to a real function that

always produces the same result for a given input)

Although this feature can be leveraged in cases where the PUF is used as a TRNG, it

represents a serious issue for key generation and authentication applications

As we will discuss, a PUF will require helper data to accomplish what is normally

possible with NVM memories, i.e., precise reproduction of the bitstring

Intra-chip hamming distance (HDintra): A metric that measures the resilience of a

PUF to environmental conditions and :

HD x distx;x
intra i i

ECE UNM 9 (1/27/18)

i i
where x and x are two distinct evaluations of pufi using x

Recall Slide 6 from PUF I Lecture

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Reliability
HDintra is used to measure the difference in the responses of one particular PUF

instance evaluated with the same challenge x
The process of producing the bitstring the first time is called enrollment
The process of reproducing the bitstring is called regeneration
HDintra measures the number of differences (the Hamming distance between

the bitstrings) that occur in the bitstring during subsequent regenerations

HDintra expresses the average noise in the responses, and reflects reproducibility

(or reliability)

Therefore, the idea value for HDintra is 0%

For example:
0 (Chip0 bitstring during enrollment under conditions 1)110100101

0 (Chip0 bitstring during regeneration under conditions 2)110110101

0 0 0 0 1 0 0 0 0 0 = 1/10 = 10%

ECE UNM 11 (1/27/18)

(HDintra)

1 might be 25oC, 1.00V while 2 might be 100oC, 1.05V

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Reliability
The HDintra characteristics of a PUF class P are critically important to the practical

utility of the PUF

Most published literature on PUFs report HDintra by carrying out hardware experi-

ments that introduce changes in the environmental conditions
Small analog differences in the behavior of the PUF introduced by measurement

and temperature/voltage noise (TV noise) are very difficult to model accurately

Therefore, predicting HDintra from theoretical or simulation experiments is only

OF LIMITED VALUE, and you should be very skeptical of the results

The chips which embed the PUF are often classified according to the range of envi-

ronmental conditions that they are tolerant to:

• Commercial grade: Typically 0oC to 85oC, +/- 5% supply voltage

• Industrial grade: Typically -40oC to 100oC, +/- 10% supply voltage

• Military grade: Typically -60oC to 125oC, +/- 10% supply voltage

ECE UNM 12 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Reliability
Environmental conditions can be controlled using temperature chambers and preci-
sion power supplies

A thorough exploration of the HDintra characteristics involves carrying out regenera-

tion across all TV corners

• Enrollment typically done at 25oC, nominal supply voltage

• Regeneration typically done at all combinations of temperatures, e.g., 0oC,

25oC and 85oC, and supply voltages, -5%, nominal and +5%

Therefore, for each chip, a set of 10 bitstrings are produced

HDintra can be computed by counting the number of bit-wise differences that occur in

the bitstrings using:

• Enrollment and each of the 9 bitstrings from the TV corners (9 comparisons) OR
• All combinations of the bitstrings, i.e., 10*9/2 (45 comparisons)
Applications such as encryption require all combinations, while authentication can

be relaxed

ECE UNM 13 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Reliability

A mean HDintra in a (Npuf, Nchal, Nmeas)-experiment, where = 10 is computed as

follows (when the all combinations method is used):

A standard deviation can be computed in a similar manner

A distribution can also be created which plots:
• The number of differences along the x-axis for each pairing
• Against the number of times that difference is observed across all pairings, e.g., 45

* Npuf

With Npuf = 30 chips, the histogram is created from 1350 HDintra values

HDintra for different PUF classes P vary from 2% to 15% or larger

Error correction/avoidance methods are used to deal with this problem

2
N puf Nchal – 1

In words, count the # of differences across all 45 pairings of bitstrings for each chip,

sum them across all chips and divide by the total # of bit-wise comparisons

intra = HDintra = --HDintra

ECE UNM 14 (1/27/18)

i j

under environmental conditions on the same challenges x

HDinter is used to measure the difference in the responses of two PUF instances eval-

uated with the same challenges x

HDinter expresses the uniqueness in the responses from different PUF instances

Therefore, the idea value for HDinter is 50%

For example:
0 (Chip0 bitstring during enrollment under conditions 1)110100101

1 (Chip1 bitstring during enrollment under conditions 1)011100011

0 1 1 0 0 0 1 0 1 1 = 5/10 = 50%

ECE UNM 15 (1/27/18)

(HDinter)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Uniqueness
Inter-chip hamming distance (HDinter): A metric that measures the uniqueness of a

PUF, i.e., how different its responses are when compared to other PUFs:

HD x distx;x
inter i j

i jwhere x and
x are two distinct PUF instances puf and puf evaluated

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Uniqueness

A mean HDinter in a (Npuf, Nchal, Nmeas)-experiment, where = 1 is computed as

follows:

In words, count the # of differences across all combinations of bitstrings from differ-

ent PUF instances and divide by the total # of bit-wise comparisons

Note that usually enrollment bitstrings are used but bitstrings generated under any

environmental condition can be evaluated as well

Similar to HDintra, a standard deviation and distribution can be created from the

combinations

Mean values for different PUFs can vary dramatically from the ideal 50%, and

depends heavily on whether bias effects are present

2
N puf N puf – 1 Nchal

inter = HDinter = ---HDinter

N puf N puf – 1

2

ECE UNM 16 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Uniqueness
With Npuf = 50 chips, the histogram is created from 50*49/2 = 1225 HDinter values:

Note that the distribution is actually characterized as binomial and not Gaussian

The expected standard deviation std of a binomial is given by

Ideal Ave. HD
32,474 bits

Actual Ave. HD
Mean: 32,477 bits
Std. Dev.: 126 bits

HDinter
50.004%

HDintra
2.6%

F. Saqib, M. Areno, J. Aarestad and J.
Plusquellic, "An ASIC Implementation of
a Hardware-Embedded Physical Unclon-
able Function", IET Computers & Digital
Techniques, Vol. 8, Issue 6, Nov. 2014, pp.
288-299

stdbinomial = np1 – p = 64948 0.5 0.5 = 127.4

ECE UNM 17 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
Randomness is more difficult to evaluate than reliability and uniqueness, and
requires a suite of tests

ECE UNM 18 (1/27/18)

Entropy and MinEntropy measure the information content in a message

Interestingly, the more random a message is, the more information it has

For example, a compressed file has much more Entropy than the uncompressed
version

Patterns in the message, such as those associated with encodings of English charac-

ters, can be re-encoded (compressed) using fewer bits

Entropy and MinEntropy are measures of the disorder or randomness of a random

variable X with probabilities pi, ..., pn, and are defined as follows:
n

HX = min–log2 pi = –log2maxpi

HX = – pilog2 pi
i = 1

n

i=1 i
MinEntropy

Entropy

We compute the Entropy using the above formula as:

0.60*log2(0.60) + 0.40*log2(0.40) = 0.4422 + 0.5288 = 0.971

We conclude that this random variable has less than 1 bit of Entropy

As indicated earlier, MinEntropy analyzes the most frequently occurring binary pat-

tern and therefore, measures the worst case behavior of a random variable

In this example, MinEntropy is given as -log2(0.60) = 0.7370

ECE UNM 19 (1/27/18)

HX = –p1log2 p1 + 1 – p1log21 – p1

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
For example, assume you analyze a set of 20 binary bits (0111011110101001101)
produced by a random variable and obtain the following ’occurrence’ results:

• 8 0’s (or 8/20 = 0.40)
• 12 1’s (or 12/20 = 0.60)

First we recognize that this variable is not ideal, i.e., it does NOT produce both bit

values with equal probability of 50%

Entropy in a binary
random variable with prob.
of 1 given by p1

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
If ’occurence’ statistics are known in advance, Entropy encoding schemes can be
used to optimally encode messages, reducing their length, e.g., Huffman coding

There are MANY ways to compute Entropy w.r.t. PUFs, and you will see different

methods used in the literature

Ideal is for PUF-generated bitstrings to have Entropy of 1 across bitstrings and chips

H(x)191817161514131211109876543210chip/bit #
1.00011100011110001010010C1
0.99300100011001011111011C2
0.97100100110100001010011C3
0.99311100000011100101111C4
1.00001101011100100011001C5
1.00000010110110110100011C6
0.97100110101101111010110C7
0.97100000000110011101110C8
0.88100000001001110110000C9
1.00010000100111101010101C10

0.880.880.970.720.470.971.001.000.881.001.000.971.000.971.000.880.970.970.880.97H(x)

ECE UNM 20 (1/27/18)

ECE 525

The 4 possible patterns are "00", "01", "10" and "11", which are expected to occur at

equal frequencies of 25% when the bitstring is random:

00: 3
01: 3
10: 0
11: 4

Here, Entropy is (note: log2(0) is defined to be 0):

-0.3*log2(0.3) - 0.3*log2(0.3) - 0.0*log2(0.0) -

0.4*log2(0.4) = 1.571/2 bits = 0.785 bits

And MinEntropy is:
-log2(0.4) = 1.321/2 = 0.661 bits

Substrings of any size can be analyzed in this fashion

HOST Physical Unclonable Functions I

PUF Statistical Metrics for Randomness
Entropy can also be computed over substrings of the bitstring, e.g.,

Second row of table:

1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 0

ECE UNM 21 (1/27/18)

ECE 525HOST Physical Unclonable Functions I

PUF Statistical Metrics for Randomness
Conditional MinEntropy can also be computed using pairs of bits

ECE UNM 22 (1/27/18)

It is used to determine if correlations exist, i.e., whether the 1st bit is dependent on

the 2nd

The Conditional MinEntropy for the 10 non-overlapping bit pairs on prev. slide:
Prob. 2nd bit is ’0’ => 0.3
Prob. 2nd bit is ’1’ => 0.7

Find max among 4 computed values of (pX/pW) given in this example by 0.3/0.3, 0.3/

0.7, 0.0/0.3, 0.4/0.7

-log2(0.3/0.3)= 0.000 (when 2nd bit 0, so is 1st bit)

 pW

Here, we compute pX as usual for the 4 possible patterns

And then divide by pW which is the probability that the second bit is a ’0’ for

patterns "00" and "10" or ’1’ for patterns "01" and "11"

 pX
HXW = –log2max--------

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
This material is derived from the NIST published document:

"A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications"

A random bit sequence can be interpreted as the result of a sequence of ’flips’ of an

unbiased (fair) coin

With sides labeled ’0’ and ’1’, each flip has probability of exactly 1/2 of producing a

’0’ or ’1’

Also, the ’flip’ experiments are independent of each another

The fair coin toss experiment is an example of a perfect random bit generator because

the ’0’s and ’1’s are randomly and uniformly distributed

It is not possible to predict the result of the next trial with probability greater than

50%, i.e., the result is uncertain

ECE UNM 23 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
Random Number Generators (RNGs)

An RNG uses
• A non-deterministic source (the Entropy source, e.g., noise in an electrical

cir- cuit)

• A processing function called Entropy distillation to improve randomness

Distillation is used to overcome any weaknesses in the entropy source that results in

generation of non-random sequences (distillation can be done with XOR)

There are an infinite number of possible statistical tests that can be applied to a

sequence to determine whether ’patterns’ exist

Therefore, no finite set of tests is deemed complete

Statistical tests are formulated to test a specific null hypothesis (H0)

Here the null hypothesis-under-test is that the sequence being tested is random

The antonym to H0 is the alternative hypothesis (Ha), that the sequence is NOT ran-

dom

ECE UNM 24 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
Each test has an underlying reference distribution which is used to develop a critical
value, e.g., a value out on the tail of the distribution, say at 99%

The test statistic computed for the sequence is compared against the critical value,

and if larger, the sequence is deemed NOT random (H0 is rejected)

The premise is that the tested sequence, if random, has a very low probability, e.g.,

0.01%, of exceeding the critical value

The probability of a Type I error, i.e., the data is actually random but the test statistic

exceeds the critical value, is often called the level of significance,
A commonly used value for is 0.01

Analogously, the probability of a Type II error, i.e., the data is not random but passes

the test, is denoted by
 (unlike) is NOT a fixed value because there are an infinite number of ways a

sequence can be non-random

ECE UNM 25 (1/27/18)

ECE 525HOST Physical Unclonable Functions I

PUF Statistical Metrics for Randomness
The NIST tests attempt to minimize the probability of a Type II error

ECE UNM 26 (1/27/18)

Note that the probabilities and are related to each other and to the size n of the

tested sequence

And the third parameter is dependent on the other two

Usually sample size n and an are chosen, and a critical value is computed that

minimizes the probability of a Type II error

A test statistic S is computed from the data, and is compared to the critical value t to

determine whether H0 is accepted

S is also used to compute a P-value, a measure of the strength of the evidence
against H0

Technically, the P-value is the probability that a perfect RNG would have produced a

sequence less random than the sequence-under-test

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
If the P-value is 1, then the sequence appears to have perfect randomness, if 0, then
its completely non-random, i.e., larger P-values support randomness

A significance level, , is chosen and indicates the probability of a Type I error

If the P-value >= , then H0 is accepted, otherwise it is rejected

If is 0.01, then one would expect 1 truly random sequence in 100 to be rejected

Two major assumptions:

• Uniformity: At any point in the generation of a random bit sequence, the

number of ’0’s and ’1’s is equally likely and is 1/2, i.e., expected number of ’1’s

is n/2

• Scalability: Any test applicable to a sequence is also applicable to a subsequence
extracted at random, i.e. all subsequences are also random

ECE UNM 27 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
The NIST Test Suite has 15 tests -- for many of them, it is assumed the bit sequence

is large, on order of 103 to 107

1) Frequency Test:
Counts the number of ‘1’ in a bitstring and assesses the closeness of the fraction

of ‘1’s to 0.5 (failing frequency usually means failure of most other tests)

2) Block Frequency Test:
Same except bitstring is partitioned into M blocks. Ensures bitstring is ‘locally’

random

3) Runs Test:
Analyzes the total number of runs, i.e., uninterrupted sequences of identical bits,

and tests whether the oscillation between ‘0’s and ‘1’s is too fast or too slow

4) Longest Run Test:
Analyzes the longest run of ‘1’s within M-bit blocks, and tests if it is consistent

with the length of the longest run expected in a truly random sequence

ECE UNM 28 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

PUF Statistical Metrics for Randomness
5) Rank Test:

Analyzes the linear dependence among fixed length substrings, and tests if the

number of rows that are linearly independent match the number expected in a

truly random sequence

6) Fourier Transform Test:
Analyzes the peak heights in the frequency spectrum of the bitstring, and tests if

there are periodic features, i.e., repeating patterns close to each other

7&8) Non-overlapping and Overlapping Template Tests:
Analyzes the bitstring for the number of times pre-specified target strings occur,

to determine if too many occurrences of non-periodic patterns occur

9) Universal Test:
Analyzes the bitstring to determine the level of compression that can be achieved

without loss of information

ECE UNM 29 (1/27/18)

HOST Physical Unclonable Functions I ECE 525

NIST Test Suite for Randomness
10) Linear Complexity Test:

Analyzes the bitstring to determine the length of the smallest set of LFSRs

needed to reproduce the sequence

11&12) Serial and Approximate Entropy Tests:

Analyzes the bitstring to test the frequency of all possible 2m overlapping m-bit
patterns, to determine if the number is uniform for all possible patterns

13&14) Cumulative Sums Test:
Analyzes the bitstring to determine if the cumulative sum of incrementally

increasing (decreasing) partial sequences is too large or too small

15) Random Excursions Test:
Analyzes the total number of times that a particular state occurs in a cumulative

sum random walk

The National Institute of Standards and Technology (NIST) statistical tools

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

ECE UNM 30 (1/27/18)

ECE 525HOST Physical Unclonable Functions I

NIST Test Suite for Randomness
NIST ’finalAnalysisReport’ using HELP ASIC

50 chips
64,948 bits/chip

ECE UNM 31 (1/27/18)

The minimum pass rate for each statistical test with the exception of the random

excursion (variant) test is approximately = 47 for a sample size = 50 binary

sequences

Statistical testP/FProportionP/FP-valueC10C9C8C7C6C5C4C3C2C1

Frequency50/500.9566555576542
Block Frequency49/500.4942426737865
CumulativeSums50/500.8175478456524
CumulativeSums50/500.4946743487614

Runs47/500.007325422710312
LongestRun49/500.8511574656565

Rank50/500.2905234844389
FFT50/500.8513755465438

NonOverlapping
Template

50/500.5755666285516

...*....................................
ApproximateEntropy50/500.9365646457562

Serial49/500.6991647367565
Serial50/500.2372447922767

