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Book and Website

* These notes are based on the following book

* Physically Unclonable Functions
» Constructions, Properties and Applications

by Roel Maes

Springer-Verlag

2013

ISBN 978-3-642-41394-0

* ISBN 978-3-642-41395-7 (eBook)

* And these notes are based on research & papers by Professor James
Plusquellic of the University of New Mexico

* http://ece-research.unm.edu/jimp/



Reading

* Physically Unclonable Functions, Chapters 1,2 & 4



PUF Goals

"door key" by woodleywonderworks is licensed with CC BY 2.0. To view a
copy of this license, visit https://creativecommons.org/licenses/by/2.0/

"Fingerprint" by CPOA is licensed with CC BY-ND 2.0. To view a copy of
this license, visit https://creativecommons.org/licenses/by-nd/2.0/
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PUF Goals (continued)

* Root-of-Trust (RoT)

* Non-Volatile Memory (NVM) is the
main alternative

* NVM is typically considered to be
much more vulnerable to attack

* By definition of “memory,” one can read
and write NVM bits

* PUF technology, on the other hand,
typically cannot be written

* “An expression of an inherent and
unclonable instance-specific feature of
a physical object” (Maes, pg. 6)

_ _ "Banyan Tree Roots" by moonjazz is marked under CC PDM 1.0. To view the
©Georgia Institute of Technology, 2018-2024 terms, visit https://creativecommons.org/publicdomain/mark/1.0/
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Isa PUF a Function?

* Let y = puf(x).Eval
* If by “function” what is meant is a “deterministic function,” the

answer for all known silicon PUFs is “No!”
* The main reason is the variation due to temperature and voltage

* If by “function” what is meant is a “probabilistic function,” the answer
is “Yes”



The Billion Dollar PUF Question

* Can the underlying physics of a PUF be harnessed to provide the
following

* An exponentially large (as opposed to polynomial) challenge-response space

* Statistically reliable responses which can be utilized for cryptography
* Authentication
* Encryption

 Sufficient sizes of “n” such that an adversary cannot carry out brute-force
attacks successfully



The Million Dollar PUF Question

e Can the underlying physics of a PUF be harnessed to provide the
following
* Alarge (e.g., polynomial) challenge-response space
Statistically reliable responses which can be utilized for cryptography
* Encryption
Hide the challenge
* e.g., only provide challenge during a secure enrollment process
Sufficient physical hiding of the PUF response from side-channel and other
physical attacks
Use the obscurity of the above to avoid brute-force attacks with other than a
negligible probability of success
* Analogy: use of a small password but lock up after 10 (or less, e.g., seven or three) guesses



PUF Definition

* A PUF is a combination of a physical source and a technique as
follows:

* A physical source of randomness (also referred to as entropy)
* This course will focus almost exclusively on silicon based processes

* There is a very strong relationship with testability of microchip technology

* In a sense the more testable a process is, the less suitable is that aspect of the process as a
source of randomness

* Atechnique to measure the random physical source and present the result in
the form of a number (i.e., a bit pattern)



What is Entropy?

* Second law of thermodynamics
* Molecules in a gas expand randomly to fill the available space



Extrinsic versus Intrinsic PUFs

* An extrinsic PUF has its entropy source and measurement technology
distinct
* Example: optical PUF

* An optical PUF typically has a fiber optic cable connected to a microchip for
measurement

 Random fluctuations in the material appear to approach the level of
randomness of atomic decay

* Once fabricated, the fiber optic material has repeatable fluctuations
* Anintrinsic PUF has its entropy source and measurement in the same
physical object
* This class focuses on intrinsic PUFs in silicon



"Silicon Wafers" by LarimdaME is licensed with CC BY-NC 2.0. To view a copy
of this license, visit https://creativecommons.org/licenses/by-nc/2.0/
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Silicon Fabrication Processes

* No two silicon dice are identical

* Each die has unique characteristics
* Nanometer variations in atomic composition
* What is drawn or intended by a designer is never exactly implemented

* E.g., in the last few planar MOSFET generations, layout was changed by
Optical Proximity Correction (OPC) techniques, e.g., corners of a bus wire

* The effects of variations in silicon processes are typically exhibited
and measured via electrical characteristics
* Delay
* Voltage levels

* Overall goal of fabrication is to eliminate variations either within a die
(intra-die) and between different dice (inter-die)



Back to the Goals of PUF Usage

* What if we lack certainty regarding the inability of an adversary to
carry out a successful attack on a PUF?

* Not certain that the search space grows exponentially
* Not certain that “n” can be made large enough to rule out brute force attacks

* Not sure that an adversary with insider access to one of the supply chain

steps cannot glean information sufficient to carry out a successful attack

* A so-called “Weak PUF” is not guaranteed to have an exponential
challenge-response space

* Some applications — e.g., part tracking on a manufacturing floor —
may benefit from weak PUF technology

* A so-called “Strong PUF” claims to have a negligible probability of
being successfully attacked for a given attack surface



Strong PUF Attack Surface

» Adversary has physical possession of the microchip for a limited time

* E.g., achipis being mounted on a printed circuit board by an “untrusted”
company in a country distinct from the eventual country of usage

* Initial chip fabrication may occur within the country of usage but by a
manufacturing plant owned by an international company

* Adversary can collect a polynomial number of challenge-response
pairs and store them

e Adversary can also aim to build a model of the physical PUF
* Note that this is distinct from traditional cryptanalysis
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Fig. 2.1 Construction of a basic arbiter PUF as proposed by Lee et al. [43, 75, 78]



The Arbiter PUF is Machine Learnable

* How?
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Ring Oscillators: Example of a Physically hard

for yoU to clone Function (PUF)

Fig. 2.3 Construction of a Challenge
comparison-based ring

oscillator PUF as proposed by e
Suh and Devadas [136] A , _V
N

* Page 32 of Maes /A

* Each microchip will have transistor
variations resulting in distinct timing
characteristics for the ring oscillators
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[136] G. Edward Suh and
Srinivas Devadas, “Physical
Unclonable Functions for
Device Authentication and
Secret Key Generation,” Design
Automation Conference (DAC),
2007, pp. 9-14.
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Table 4.1 Silicon area breakdown of the different test chip building blocks

Building block Silicon area Relative area Building block content
(mm?) (-/total logic)

Ring Oscillator PUF 0.241 10.7 % 4096 ring oscillators + 16 x
32-bit counters 4+ control

Latch PUF 0.272 9.9% 4 x 8192 latches 4 2 x
multiplexer tree

SRAM PUF 0.213 12.1 % 4 x 64 kbit SRAM array

D Flip-Flop PUF 0.392 17.4 % 4 x 8192 D flip-flops + 2 x
multiplexer tree

Arbiter PUF 0.279 12.4 % 256 x 64-bit arbiter PUF4-control

Buskeeper PUF 0.076 3.4% 2 x 8192 buskeeper cells + 2 x
multiplexer tree

Active Core 0.353 15.7 % 32 x 128-bit substitution-

permutation rounds

Additional Blocks 0.425 18.9 % SPI interface. memory mapping.
power control, . ..

Total Logic Area 2.201 100.0 % all of the above

Overhead 1.405 62.4 % I/O pads, power/ground rings,
empty space,. ..

Complete Test Chip 3.656 162.4 % 1912 pm x 1912 pm silicon die
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