
Tests for Randomness
ECE 4156/6156 Hardware-Oriented

Security and Trust
Spring 2024

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024 1

National Institute of Standards and Technology

• This lecture is based on NIST Special Publication 800-22 Revision 1a,
“A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications,” Rukhin et al., April 2010,
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication80
0-22r1a.pdf

©Georgia Institute of Technology, 2018-2024 2

Abstract
“This paper discusses some aspects of selecting and testing random and
pseudorandom number generators. The outputs of such generators may
be used in many cryptographic applications, such as the generation of key
material. Generators suitable for use in cryptographic applications may
need to meet stronger requirements than for other applications. In
particular, their outputs must be unpredictable in the absence of
knowledge of the inputs. Some criteria for characterizing and selecting
appropriate generators are discussed in this document. The subject of
statistical testing and its relation to cryptanalysis is also discussed, and
some recommended statistical tests are provided. These tests may be
useful as a first step in determining whether or not a generator is suitable
for a particular cryptographic application. However, no set of statistical
tests can absolutely certify a generator as appropriate for usage in a
particular application, i.e., statistical testing cannot serve as a substitute
for cryptanalysis. The design and cryptanalysis of generators is outside
the scope of this paper.”

©Georgia Institute of Technology, 2018-2024 3

Random Number Testing
• Aim to detect if a binary sequence deviates from randomness
• Random Number Generator (RNG)

• Result of a sequence of unbiased (i.e., “fair”) coin tosses
• Each flip has a probability of exactly ½ of producing a “0” or a “1”
• Each flip is independent of each other

• Typically not used directly for most applications due to cost
• NOTE: also known as a True Random Number Generator (TRNG)

• Pseudo-Random Number Generator (PRNG)
• Starting point based on a seed
• Typically deterministic and known; hence pseudo-random
• For most use cases, session is short enough to appear to be truly random (i.e.,

an RNG) given that the seed is unknown to the adversary
• May use an RNG to produce a list of seeds which are distributed accordingly

©Georgia Institute of Technology, 2018-2024 4

Random Number Testing (continued)

• “Randomness is a probabilistic property” (page 1-2)
• Key idea: test for any “pattern” which would not be random
• No finite set of tests is considered “complete”
• null hypothesis (H0)

• The sequence being tested is random, i.e., there is no correlation between
the bit sequence and any known predictive technique

• alternate hypothesis (Ha)
• The sequence being tested is not random

©Georgia Institute of Technology, 2018-2024 5

©Georgia Institute of Technology, 2018-2024 6

CONCLUSION

TRUE SITUATION Accept Ha (reject H0)Accept H0

Type I errorNo errorData is random (H0 is true)

No errorType II errorData is not random (Ha is true)

Main Idea

• For each test, determine if non-randomness appears to be occurring
with what probability

• For example, can say that a particular test result indicates that there
is less than a 1% chance that a random bitstring would have exhibited
the test pattern observed

• For this class (Hardware-Oriented Security and Trust or HOST), we will
not explain the statistics used for each test to indicate the percentage
chance that a random bitstring would have exhibited the test pattern
under consideration

• Conclusion: a truly random bitstring should pass all or nearly all tests

©Georgia Institute of Technology, 2018-2024 7

Type I and Type II Errors

• Different use-case scenarios may prioritize Type I and Type II errors
differently

• An inexpensive consumer electronics game may be very concerned about
Type I errors due to increased cost of delay & bitstring regeneration (the
bitstring is in fact random but is misidentified as nonrandom, hence the game
is delayed while a new bitstring is computed)

• A highly sensitive company or government communication may be very
concerned about Type II errors resulting in release of the sensitive
information

• Statistical test parameters can be set to minimize Type I errors or
Type II errors (and also may provide some possible tradeoffs)

©Georgia Institute of Technology, 2018-2024 8

Test 1: Frequency (Monobit) Test

• Focus: test the number of zeros and ones in the entire sequence
• If the sequence is truly random, the fraction should approach ½
• Test: add the bits where zero is converted to -1

©Georgia Institute of Technology, 2018-2024 9

Test 2: Frequency Test within a Block

• Test the number of zeros and ones within subsets of the sequence
• M = block length, n = sequence length, M < n

• Let ௡

ெ

• Determine ratio of ones in each block; discard any leftover bits
• Example: sequence  = 0110011010, M = 3

• Three blocks: 011, 001 and 101 (the final 0 is discarded)
• Ratios: 1 = 2/3, 2 = 1/3 and 3 = 2/3

©Georgia Institute of Technology, 2018-2024 10

Test 3: Runs Test

• Count number of runs in a sequence
• Where a “run” of length k is defined as a sequence of ones or zeros (not both)

bounded by the other number

• Various statistics are computed, e.g., the total number of zero-runs
and the total number of one-runs

• Example: sequence  = 1001101011
• The runs test first executes the frequency test: result here is  = 6/10
• If frequency test passed, count number of runs
• Here we have 7 runs: 1 00 11 0 1 0 11
• Apply statistical test to determine if the result is statistically unlikely

©Georgia Institute of Technology, 2018-2024 11

Test 4: Longest-Run-of-Ones in a Block

• Find longest run of ones within an M-bit block from the sequence 
• Statistically, an irregularity in the expected length of the longest run

of ones would also typically result in a similar irregularity in the
expected length of the longest run of zeros

• Therefore, only test for the longest run of ones

• The reference distribution for this test is known & is compared
against

• Can say, for example, that there is less than a 1% chance that a truly random
bit sequence fails a particular longest-run-of-ones test for a particular choice
of M

©Georgia Institute of Technology, 2018-2024 12

Test 5: Binary Matrix Rank Test

• Test for rank (independent rows or columns) of disjoint sub-matrices
• Let M = # matrix rows, Q = # matrix columns

• E.g., M = 32 and Q = 32

• Test ௡

ெொ
matrices, discarding any unused bits

• Example:  = 01011001001010101101, M = 3 and Q = 3
• Result: two matrices, the first with rank 2 and the second with rank 3
• Note: test code provided by NIST is optimized for M = 32 and Q = 32

©Georgia Institute of Technology, 2018-2024 13

All 15 Random Number Generator Tests
1. The Frequency (Monobit) Test
2. Frequency Test within a Block
3. The Runs Test
4. Tests for the Longest-Run-of-

Ones in a Block
5. The Binary Matrix Rank Test
6. The Discrete Fourier Transform

(Spectral) Test
7. The Non-overlapping Template

Matching Test

©Georgia Institute of Technology, 2018-2024 14

8. The Overlapping Template Matching
Test

9. Maurer’s “Universal Statistical” Test
10. The Linear Complexity Test
11. The Serial Test
12. The Approximate Entropy Test
13. The Cumulative Sums (Cusums) Test
14. The Random Excursions Test
15. The Random Excursions Variant Test

©Georgia Institute of Technology, 2018-2024 15

