# Crypto VIII: Theory of Block Ciphers *ECE 4156/6156 Hardware-Oriented Security and Trust*

Spring 2024
Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

### Reading Assignment

• Please read Chapter 6 of the course textbook by Katz and Lindell

#### Confusion



- Hide the relationship between the plaintext, ciphertext and key
  - Consider an extreme case: a key dependent lookup table mapping 64 bits of plaintext to 64 bits of ciphertext
    - This would provide sufficient security
    - Problem: if the key has *n* bits, need  $(2^n)^*(2^{64}) = 2^{(n+64)}$  amount of memory
      - Note that  $2^{40}$  = Terabyte (TB), and a single storage rack in a server farm can handle a few TB
  - Modern block ciphers use much smaller tables (so-called "substitution boxes" or s-boxes)
    - Smaller size may allow brute-force attacks to succeed
    - In other words, the reduction in size helps make the block cipher computable with reduced memory but also helps the adversary

|   | Ī | У  |            |            |    |    |    |    |            |           |    |    |    |    |    |    |            |
|---|---|----|------------|------------|----|----|----|----|------------|-----------|----|----|----|----|----|----|------------|
|   |   | 0  | 1          | 2          | 3  | 4  | 5  | 6  | 7          | 8         | 9  | a  | b  | C  | d  | е  | f          |
| x | 0 | 63 | 7c         | 77         | 7b | £2 | 6b | 6£ | с5         | 30        | 01 | 67 | 2b | fe | d7 | ab | 76         |
|   | 1 | ca | 82         | <b>c</b> 9 | 7d | fa | 59 | 47 | £0         | ad        | d4 | a2 | af | 9c | a4 | 72 | <b>c</b> 0 |
|   | 2 | b7 | fd         | 93         | 26 | 36 | 3£ | £7 | O<br>C     | 34        | a5 | e5 | f1 | 71 | q8 | 31 | 15         |
|   | 3 | 04 | <b>c</b> 7 | 23         | с3 | 18 | 96 | 05 | 9a         | 07        | 12 | 80 | e2 | eb | 27 | b2 | 75         |
|   | 4 | 09 | 83         | 2c         | 1a | 1b | 6e | 5a | a0         | 52        | 3b | d6 | b3 | 29 | e3 | 2f | 84         |
|   | 5 | 53 | d1         | 00         | ed | 20 | fc | b1 | 5b         | 6a        | cb | be | 39 | 4a | 4c | 58 | cf         |
|   | 6 | d0 | ef         | aa         | fb | 43 | 4d | 33 | 85         | 45        | £9 | 02 | 7£ | 50 | 3c | 9£ | a8         |
|   | 7 | 51 | a3         | 40         | 8£ | 92 | 9d | 38 | £5         | bc        | b6 | da | 21 | 10 | ff | £3 | d2         |
|   | 8 | cd | 0c         | 13         | ec | 5£ | 97 | 44 | 17         | <b>c4</b> | a7 | 7e | 3d | 64 | 5d | 19 | 73         |
|   | 9 | 60 | 81         | 4f         | dc | 22 | 2a | 90 | 88         | 46        | ee | b8 | 14 | de | 5e | 0b | ďb         |
|   | a | e0 | 32         | 3a         | 0a | 49 | 06 | 24 | 5c         | c2        | d3 | ac | 62 | 91 | 95 | e4 | 79         |
|   | b | e7 | c8         | 37         | 6d | 8d | d5 | 4e | a9         | 6c        | 56 | £4 | ea | 65 | 7a | ae | 08         |
|   | С | ba | 78         | 25         | 2e | 1c | a6 | b4 | <b>c</b> 6 | e8        | dd | 74 | 1f | 4b | bd | 8b | 8a         |
|   | d | 70 | 3e         | <b>b</b> 5 | 66 | 48 | 03 | £6 | 0e         | 61        | 35 | 57 | b9 | 86 | c1 | 1d | 9e         |
|   | е | e1 | £8         | 98         | 11 | 69 | d9 | 8e | 94         | 9b        | 1e | 87 | e9 | се | 55 | 28 | df         |
|   | f | 8c | a1         | 89         | 0d | bf | e6 | 42 | 68         | 41        | 99 | 2d | 0f | b0 | 54 | bb | 16         |

Figure 7. S-box: substitution values for the byte xy (in hexadecimal format).

#### Diffusion

• Spread the influence of changing a few bits of plaintext or the key over as much of the ciphertext as possible

• Helps hide statistical relationships

#### Diffusion

- Spread the influence of changing a few bits of plaintext or the key over as much of the ciphertext as possible
  - Helps hide statistical relationships

### Combining Confusion and Diffusion

- Substitute (confuse) and permute (diffuse)
  - Product cipher
  - Substitution-permutation (SP) network
- Consider AES
  - Diffusion: ShiftRows and MixColumns
    - Both are linear
  - Confusion: SubBytes (also referred to as S-Boxes)
    - Nonlinear
  - All operations are fairly simple (fast) to compute
- Iterated block cipher
  - Two rounds of AES is not strong
  - AES has between 10 and 14 rounds (depending on chosen key size)

## Feistel Networks (not used by AES)



- Horst Feistel worked for IBM Research
- Take a block of length n and divide into two equal halves L and R
  - *n* must be even
- Define an iterated block cipher
- This function is reversible
- Therefore, a cipher based on a Feistel network is guaranteed to be invertible
- Note that reversibility is not dependent on f being reversible
- Further note that the same algorithm works for decryption

• 
$$L_i = R_{i-1}$$

- $R_i = L_{i-1} \text{ XOR } f(R_{i-1}, K_i)$ 
  - where  $K_i$  is the subkey used in round i and f is the round function used

• 
$$L_{i-1}$$
 XOR  $f(R_{i-1}, K_i)$  XOR  $f(R_{i-1}, K_i) = L_{i-1}$ 



### SubBytes/S-Box Design

- S-Box: a mapping from m bits to n
- Typically implemented as a look-up table
- Non-linear and non-degenerate, i.e., no way to compute the relation with a function
  - => must perform a look-up in memory!
- Boolean properties: balance of zeros and ones, no correlations between different bit combinations, avalanche effect
  - Avalanche: one bit of input should on average change approximately half of the output bits
- Provides strong resistance to cryptanalysis
  - In other words, forces the adversary to only use brute force attacks