RSA

 ECE 4156/6156 Hardware-Oriented

 ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

Reading Assistance

- RSA is covered in Chapter 8 of Introduction to Modern Cryptography by Katz and Lindell, but advanced number theory and other theoretical questions not covered in this lecture will not be required for this course
- Obviously, theory that is covered - either in the slides or as explained - are required!
- Another way to state this is that the expectation is that everything explained in lecture is understood; if not, please ask!!!

Introduction

- The idea of asymmetric crypto first published by Hellman and Diffie in 1976
- Martin Hellman was a young faculty member in Electrical Engineering at Stanford
- Whitfield Diffie joined Stanford's AI Lab in 1969 and worked for John McCarthy
- In 1974, Whitfield Diffie started to work with Martin Hellman
- RSA invented by Ron Rivest, Adi Shamir and Leonard Adelman in 1977
- Worked together for a year at MIT to develop a one-way function to implement Diffie-Héllman
- Rivest and Shamir were trained in Computer Science; Adelman in Mathematics
- Adelman would typically "break" the proposals of Rivest and/or Shamir
- Additional contemporary inventors of asymmetric cryptographic algorithms
- Ralph Merkle developed an asymmetric crypto scheme as an undergraduate project at U.C. Berkeley and unsuccessfully tried to publish prior to 1977
- Clifford Cocks, Government Communications Headquarters (GCHQ), U.K., also in the 1970s

- Security based on difficulty of factoring large numbers
- Public and private keys are functions of prime numbers
- E.g., each key may have 200 digits
- Concept of a one-way function
- Easy to compute in one direction, hard to compute in reverse
- Different keys accomplish encryption versus decryption
- Allows one to publish encryption keys while keeping decryption keys secret
- "Public-key" cryptography
- Choose two large prime numbers at random
- p and q of approximately equal length
- Compute $n=p^{*} q$
- Randomly choose encryption key e
- e and $(p-1)(q-1)$ have no factor in common (other than 1)
- Note: a number x is said to factor y iff x / y has no remainder (i.e., the remainder is zero!)
> relatively prime or coprime
- Compute d such that the following holds
- ed=1 $\bmod (p-1)(q-1)$
- In other words, $d x=e^{-1} \bmod (p-1)(q-1)$
- Note that in modular arithmetic e^{-1} is the multiplicative inverse of e

A Comment on/Multiplicative Inverse in Modular Arithmetic

- In modular arithmetic, all numbers are whole
- No fractions and no decimals
- For example, consider modulus with respect to u
- Suppose $u=11$
- $13 \bmod u=13 \bmod 11=2$
- Suppose $t=7$

$$
\bmod (p-1)(q-1)
$$

- Let $v=t^{-1}=$ multiplicative inverse of t in modular arithmetic $>t v \bmod u=1=t^{*} t^{-1}$

$$
\begin{aligned}
& \text { Compute } v \text { such that } v=t^{-1} \\
& \text { - } \operatorname{try} v=1 \text { : then } t v \bmod u=7 \bmod 11 \neq 7 \neq 1 \\
& \text { try } v=2 \text { : then } t v \bmod u=14 \bmod 11=3) \neq 1 \\
& \text { - } \ldots \\
& \begin{aligned}
\text { try } v=8: \text { then } t v \bmod u=56 \bmod 11=1 \\
>v=t^{-1}=8
\end{aligned}
\end{aligned}
$$

Key Generation (cont'd)

- p and q are randomly chosen large prime numbers
- $n=p^{*} q$
- Encryption key e is chosen such that
- e and $(p-1)(q-1)$ have only 1 as a factor in common $>$ relatively prime or coprime
- Compute d such that the following holds
- $d=e^{-1} \bmod (p-1)(q-1)$ where e^{-1} is the multiplicative inverse of e
- d and \underline{n} have no factor in common (other than 1)
$>d$ and n are coprime
- e and n are the public "key"
- d and n are the private "key"

Example of Key Generation

- Choose $p=47, q=71$
- $n=p^{*} q=47 * 71=3337$
- e must have no factor in common with $((p-1)(q-1)=46 * 70=3220$
- Randomly choose e=79
$>d=e^{-1} \bmod (p-1)(q-1)=79^{-1} \bmod 3220$
$>$ a program can be run to find d
- variations of an original approach by Euclid
$>$ the result for this example is $d=1019$

- Public key (pair): $e=79$ and $n=3337$
- Private key: $d=1019$
- Note: p and q may be thrown away \& are no longer used or needed
- Of course, p and q should not be revealed in any way!

RSA Encryption and Decryption

$$
s=10
$$

$$
2^{10}=1024
$$

- Given message m, divide m into blocks m_{i} each of size 2^{s}
- E.g., s is typically the largest number such that $2^{s}<n$
- The encrypted message c has block c_{i} each equal in size to m_{i}
- Encryption formula: $c_{i}=\left(m_{i}^{e}\right) \bmod n$
- Decryption formula: $m_{i}=c_{i}^{d} \bmod n$

$$
\left(C_{i}{ }^{\text {ache equal in size }}\right. \text { mod }
$$

- Note the following where we skip the "mod n " everywhere: $\left(\cdot\left(c_{q^{d}}^{d}\right)=\left(m_{i}^{e}\right)^{d}=m_{p d}^{〔 d}=m_{i}^{k(p-1)(q-1)+1}\right.$ since ed $=1 \bmod (p-1)(q-1)$
- $m_{i}^{k(p-1)(q-1)+1)}=\prod_{i}\left(m m_{i}^{k(p-1)(q-1)}\right)=m_{i}\left(m_{i}^{(p-1)(q-1)}\right)^{k}=m_{i}^{*} 1=m_{i}=x_{1} x_{2} x_{3} x_{4} \bmod d_{n}$
- Note that $\left(m_{i} m^{(p-1) /(q-1)}\right)^{k} \bmod n=1$ due to known results in group theory
- Noted that may also encrypt with d and decrypt with $\underline{e}=\left(x_{1} \bmod n\right)\left(x_{n} \bmod n\right)$

$$
\begin{gathered}
c_{1}=m_{i}{ }^{2}{ }^{2}=m_{i} \cdot{ }^{2} l
\end{gathered}
$$

$$
\operatorname{erc}_{\text {prex }}(\text { Videogame } \operatorname{code})=\frac{d .3}{\operatorname{sig}}
$$

Example of Encryption with Keys from Prior Ex.

- Public key (pair): $e=79$ and $n=3337$
- Private key (pair): $d=1019$ and $n=3337$
- $m=6882326879666683$,
$7 m_{1}=688$
$\begin{array}{r}\cdot m_{2}=232 \\ \cdot m_{3}=687 \\ \cdot m_{4}=966 \\ \cdot m_{5}=668 \\ \cdot m_{6}=003 \\ \hline c_{1}=688^{79} m\end{array}$
$\begin{array}{r}\cdot m_{2}=232 \\ \cdot m_{3}=687 \\ \cdot m_{4}=966 \\ \cdot m_{5}=668 \\ \cdot m_{6}=003 \\ \hline c_{1}=688^{79} m\end{array}$
$\begin{array}{r}\cdot m_{2}=232 \\ \cdot m_{3}=687 \\ \cdot m_{4}=966 \\ \cdot m_{5}=668 \\ \cdot m_{6}=003 \\ \hline c_{1}=688^{79} m\end{array}$
$\begin{array}{r}\cdot m_{2}=232 \\ \cdot m_{3}=687 \\ \cdot m_{4}=966 \\ \cdot m_{5}=668 \\ \cdot m_{6}=003 \\ \hline c_{1}=688^{79} m\end{array}$
$\begin{array}{r}\cdot m_{2}=232 \\ \cdot m_{3}=687 \\ \cdot m_{4}=966 \\ \cdot m_{5}=668 \\ \cdot m_{6}=003 \\ \hline c_{1}=688^{79} m\end{array}$
($\frac{c_{1}=688^{79} 9}{} \bmod 3337=1570, c=15702756209122762423,58$
- $m_{1}=1570^{1019} \bmod 3337=688$, and so on

20004124
Ir os

Why is RSA Difficult to Crack?

- Factoring is difficult, especially with large co-prime numbers a and b
- In other words, given N where it is know that $N=a^{*} b$ (byt the specific values of a and b are not known), there is no known(PPT algorithm to find a and b
- Solving discrete exponentiation / logarithm is also difficult!
- In other words, say you are given $f(x, p)=g^{x} \bmod p=$ result
- You are provided with p, x, the resulting answer from calculating $f(x, p)$, and the fact that all numbers are discrete (i.e., integers)
- There is no known PPT algorithm to find g
- In other words, given c_{i}, e and n, there is no known PPT algorithm to find m_{i} such that $c_{i}=m_{i}^{e} \bmod n$
- Solving for m_{i} for such a discrete exponentiation / logarithm is difficult
- Note that if $\left|m_{i}\right|=2048$ bits then a brute force attack (trying all m_{i}) is infeasible!

Known Weakness lett use very. for small prime ${ }^{2}$ for my device Guess w/

