
Cryptography Part VII: CCA, HMAC
and Unforgeability

ECE 4156/6156 Hardware-Oriented
Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024 1

Reading
• Introduction to Modern Cryptography, Chapter 3.7 (CCA-Security),

Chapter 4, Chapter 5.1 and Chapter 5.3

©Georgia Institute of Technology, 2018-2024 2

Notation
• E = (, ,) is an encryption scheme
• M = (, ,) is a or
• or refers to algorithms which take at most

polynomial time while having free use of a true random number generator
• ஺,

ୡୡୟ(n) is an experiment involving a private key encryption scheme  with
a key of size n and a adversary with access to ciphertext, an encryption
oracle (without limits other than time) and a decryption oracle (but the
challenge ciphertext may not be submitted)

• ௦ where the keyed hash function take inputs s and x in order to
produce output h

• A superscript is used for s, i.e., ௦, instead of a subscript, i.e., ௦ in order to emphasize
the fact that the typical attack surface includes scenarios where the adversary may have
possession of the key

©Georgia Institute of Technology, 2018-2024 3

CCA-Security
• For Chosen Ciphertext Attack (CCA) security, the attacker has access to a

decryption oracle
• Experiment ஺,

ୡୡୟ(n) is run with two messages ଴ and ଵ encrypted to ଴ and
ଵ where the adversary has to guess which message was encrypted given only

the corresponding encrypted ciphertext
• For obvious reasons, the adversary may not submit ଴ or ଵ to the decryption

oracle!

• Some practical situations where partial access to a decryption oracle
exists occur when error messages are provided

• Based on which error message occurs, a CCA may commence where, for example,
incorrect padding allows one to correctly guess the value of a byte

• Padding oracle attack! (not covered this year in ECE 4156 / 6156)

©Georgia Institute of Technology, 2018-2024 4

Message Authentication Code (MAC) Design

• In Lecture 3, Intro to SHA-2, hash functions were introduced
• Collision resistance
• Target-collision resistance (a.k.a. second preimage resistance)
• Preimage resistance

• SHA-2 is keyless (or you can say that the initial conditions are fixed)
• However, is this lecture we will introduce the concept of a MAC

which is a keyed hash
• In Lecture 4, Authentication I, it was observed that typically what is

meant by “Message Authentication” in a MAC is in fact message
integrity, i.e., verification that a message has not been altered after
being sent

©Georgia Institute of Technology, 2018-2024 5

MAC Definition

• A Message Authentication Code (MAC) M is composed of three
functions , and

• As with an encryption scheme E, generates a key
• We will denote the key for M as kM

• As with symmetric key encryption, we assume that key kM is provided to both
parties (e.g., Alice and Bob) without being revealed to the adversary

• ௞౉(m) takes as input a message m and uses kM to output a tag t
• ௞౉(m,t) takes as inputs message m and tag t

• ௞౉ uses kM to output a ‘1’ if tag t corresponds to message m
• Otherwise ௞౉ outputs a ‘0’

©Georgia Institute of Technology, 2018-2024 6

Verification that a Message is Unaltered
• The concept of a verifier can also, in principle, be applied to keyless

hashes, e.g., SHA2 or SHA3
• For a keyless hash such as SHA2 it is assumed that the tag t and message m

are not easily replaced in transit (since the adversary clearly can calculate a
new tag!)

• One possibility is to send tag t encrypted

• In this case there is no key kM used to compute tag t given message m
• In this case (which is not included in Katz and Lindell!) (m,t) verifies if

the appropriate keyless hash when provided message m as input gives as
output tag t

• Canonical verification occurs with deterministic MACs and keyless hashes
when the verifier simply recomputes tag t and checks for equality

©Georgia Institute of Technology, 2018-2024 7

©Georgia Institute of Technology, 2018-2024 8

©Georgia Institute of Technology, 2018-2024 9

©Georgia Institute of Technology, 2018-2024 10

Existentially Unforgeable under an Adaptive
Chosen-Message Attack
• Given M and adversary , − ஺,M

checks to see if can
come up with a valid MAC tag t given message m and oracle access to

௞౉except that m may not be submitted to the oracle
• The requirement that , where is the set of all oracle queries,

enforces that m may not be submitted to the oracle
• A tag is existentially unforgeable1 for an arbitrary message m if an

adversary has only a negligible change of generating a valid tag t given
only message m (and, of course, no access to key kM, i.e., a keyless
hash does not fit this experiment)

• The adaptive chosen-message attack1 refers to the adversary’s ability to
arbitrarily choose message m during the attack itself, e.g., by adding spaces or
commas to a legal statement contained in a message

• The oracle access of the attacker models the case where the attacker can
induce some messages (other than m) and obtain their corresponding tags

©Georgia Institute of Technology, 2018-2024 111 Page 112 of Katz and Lindell.

©Georgia Institute of Technology, 2018-2024 12

DEFINITION 4.2 A message authentication code M = (, ,)
is existentially unforgeable under an adaptive chosen-message attack,
or just , if for all adversaries there is a negligible function

such that, for all n,
− ஺,M

.

©Georgia Institute of Technology, 2018-2024 13

Replay Attacks

• Note that as presented the verifier has no access to any kind of
history or record of previous messages

• Without any notion of state, the protocols presented will not be able
to prevent replay attacks

• In practice, the two most popular approaches to prevent replay
attacks are (i) use of a counter and (ii) use of a timestamp

• Use of a counter has the problem of synchronization
• Use of a timestamp has the problem of slack or clock skew

• Attacks that are “fast enough” (i.e., within acceptable skew) may succeed

• Katz and Lindell pages 113-114

©Georgia Institute of Technology, 2018-2024 14

©Georgia Institute of Technology, 2018-2024 15

©Georgia Institute of Technology, 2018-2024 16

©Georgia Institute of Technology, 2018-2024 17

©Georgia Institute of Technology, 2018-2024 18

©Georgia Institute of Technology, 2018-2024 19

©Georgia Institute of Technology, 2018-2024 20

Later Discussion!

• For a keyless hash intended to attest to the integrity of a message, which of
the three approaches to combine encryption and message integrity are
preferred and why?

• 1) Encrypt-and-authenticate
• c := Enck(m), t := ௦ , send <c,t>

• 2) Authenticate-then-encrypt
• t := ௦ , c := Enck(), send <c>

• 3) Encrypt-then-authenticate
• c := Enck(m), t := ௦ , send <c,t>

©Georgia Institute of Technology, 2018-2024 21

©Georgia Institute of Technology, 2018-2024 22

©Georgia Institute of Technology, 2018-2024 23

©Georgia Institute of Technology, 2018-2024 24

©Georgia Institute of Technology, 2018-2024 26

©Georgia Institute of Technology, 2018-2024 27

©Georgia Institute of Technology, 2018-2024 28

©Georgia Institute of Technology, 2018-2024 29

©Georgia Institute of Technology, 2018-2024 30

©Georgia Institute of Technology, 2018-2024 31

©Georgia Institute of Technology, 2018-2024 32

©Georgia Institute of Technology, 2018-2024 33

©Georgia Institute of Technology, 2018-2024 36

©Georgia Institute of Technology, 2018-2024 37

