Cryptography Part VII: CCA, HMAC and Unforgeability ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2024 Assoc. Prof. Vincent John Mooney III Georgia Institute of Technology

Reading

• Introduction to Modern Cryptography, Chapter 3.7 (CCA-Security), Chapter 4, Chapter 5.1 and Chapter 5.3

Notation

- π_{E} = (Gen, Enc, Dec) is an encryption scheme
- π_{M} = (Gen, Mac, Vrfy) is a message authentication code or MAC
- Probabilistic Polynomial Time or PPT refers to algorithms which take at most polynomial time while having free use of a true random number generator
- $\operatorname{PrivK}_{A,\pi}^{\operatorname{cca}}(n)$ is an experiment involving a private key encryption scheme π with a key of size n and a PPT adversary A with access to ciphertext, an encryption oracle (without limits other than time) and a decryption oracle (but the challenge ciphertext may not be submitted)
- $H^{s}(x) \stackrel{\text{def}}{=} H(s, x)$ where the keyed hash function take inputs s and x in order to produce output h
 - A superscript is used for *s*, i.e., *H^s*, instead of a subscript, i.e., *H_s* in order to emphasize the fact that the typical attack surface includes scenarios where the adversary may have possession of the key

CCA-Security

- For Chosen Ciphertext Attack (CCA) security, the attacker has access to a decryption oracle
 - Experiment $\operatorname{PrivK}_{A,\pi}^{\operatorname{cca}}(n)$ is run with two messages m_0 and m_1 encrypted to c_0 and c_1 where the adversary A has to guess which message was encrypted given only the corresponding encrypted ciphertext
 - For obvious reasons, the adversary may not submit c_0 or c_1 to the decryption oracle!
- Some practical situations where partial access to a decryption oracle exists occur when error messages are provided
 - Based on which error message occurs, a CCA may commence where, for example, incorrect padding allows one to correctly guess the value of a byte
 - Padding oracle attack! (not covered this year in ECE 4156 / 6156)

Message Authentication Code (MAC) Design

- In Lecture 3, Intro to SHA-2, hash functions were introduced
 - Collision resistance
 - Target-collision resistance (a.k.a. second preimage resistance)
 - Preimage resistance
- SHA-2 is keyless (or you can say that the initial conditions are fixed)
- However, is this lecture we will introduce the concept of a MAC which is a keyed hash
- In Lecture 4, Authentication I, it was observed that typically what is meant by "Message Authentication" in a MAC is in fact message integrity, i.e., verification that a message has not been altered after being sent

MAC Definition

- A Message Authentication Code (MAC) $\pi_{\rm M}$ is composed of three PPT functions Gen, Mac and Vrfy
- As with an encryption scheme $\pi_{\rm E}$, Gen generates a key
 - We will denote the key for $\pi_{\rm M}$ as $k_{\rm M}$
 - As with symmetric key encryption, we assume that key $k_{\rm M}$ is provided to both parties (e.g., Alice and Bob) without being revealed to the adversary
- $Mac_{k_{M}}(m)$ takes as input a message m and uses k_{M} to output a tag t
- $Vrfy_{k_M}(m,t)$ takes as inputs message m and tag t
 - $Vrfy_{k_M}$ uses k_M to output a '1' if tag t corresponds to message m
 - Otherwise $Vrfy_{k_M}$ outputs a '0'

Verification that a Message is Unaltered

- The concept of a verifier Vrfy can also, in principle, be applied to keyless hashes, e.g., SHA2 or SHA3
- For a keyless hash such as SHA2 it is assumed that the tag t and message m are not easily replaced in transit (since the adversary clearly can calculate a new tag!)
 - One possibility is to send tag *t* encrypted
- In this case there is no key $k_{\rm M}$ used to compute tag t given message m
- In this case (which is not included in Katz and Lindell!) Vrfy(m,t) verifies if the appropriate keyless hash when provided message m as input gives as output tag t
- Canonical verification occurs with deterministic MACs and keyless hashes when the verifier simply recomputes tag t and checks for equality

 $((c_{0}, c_{1}, c_{2}, c_{3}))$ c_{1}, t

Toward the formal definition, consider the following experiment for a message authentication code $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$, an adversary \mathcal{A} , and value n for the security parameter:

The message authentication experiment $Mac-forge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary \mathcal{A} is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let \mathcal{Q} denote the set of all queries that \mathcal{A} asked its oracle.
- 3. A succeeds if and only if (1) $\operatorname{Vrfy}_k(m,t) = 1$ and (2) $m \notin Q$. In that case the output of the experiment is defined to be 1.

Existentially Unforgeable under an Adaptive Chosen-Message Attack

- Given π_M and adversary A, Mac-forge $_{A,\pi_M}(n)$ checks to see if A can come up with a valid MAC tag t given message m and oracle access to Mac_{k_M} except that m may not be submitted to the oracle
 - The requirement that $m \notin Q$, where Q is the set of all oracle queries, enforces that m may not be submitted to the oracle
- A tag is *existentially unforgeable*¹ for an arbitrary message *m* if an adversary has only a negligible change of generating a valid tag *t* given only message *m* (and, of course, no access to key *k*_M, i.e., a keyless hash does not fit this experiment)
 - The adaptive chosen-message attack¹ refers to the adversary's ability to arbitrarily choose message m during the attack itself, e.g., by adding spaces or commas to a legal statement contained in a message-e
 - The oracle access of the attacker models the case where the attacker can induce some messages (other than *m*) and obtain their corresponding tags

¹ Page 112 of Katz and Lindell.

DEFINITION 4.2 A message authentication code π_M = (Gen, Mac, Vrfy) is **existentially unforgeable under an adaptive chosen-message attack**, or just secure, if for all PPT adversaries A there is a negligible function negl such that, for all n,

$$\Pr\left[\operatorname{Mac-forge}_{A,\pi_{\mathsf{M}}}(n) = 1\right] \le \operatorname{negl}(n).$$

Replay Attacks are not provented

. need to protect against repby attalks in the osevall protocol

Replay Attacks

- Note that as presented the verifier has no access to any kind of history or record of previous messages
- Without any notion of state, the protocols presented will not be able to prevent replay attacks
- In practice, the two most popular approaches to prevent replay attacks are (i) use of a counter and (ii) use of a timestamp
- Use of a counter has the problem of synchronization
- Use of a timestamp has the problem of slack or clock skew
 - Attacks that are "fast enough" (i.e., within acceptable skew) may succeed
- Katz and Lindell pages 113-114

$\begin{array}{c} \hline Gen & Omitted, & assume key from Uniform distributed of the second distributed of the s$

generation is done by simply choosing a uniform n-bit key. Define a private-key encryption scheme (Gen', Enc', Dec') as follows:

- Gen': on input 1ⁿ, choose independent, uniform $k_E, k_M \in \{0, 1\}^n$ and output the key (k_E, k_M) .
- Enc': on input a key (k_E, k_M) and a plaintext message m, compute $c \leftarrow \operatorname{Enc}_{k_E}(m)$ and $t \leftarrow \operatorname{Mac}_{k_M}(c)$. Output the ciphertext $\langle c, t \rangle$.
- Dec': on input a key (k_E, k_M) and a ciphertext $\langle c, t \rangle$, first check whether $\operatorname{Vrfy}_{k_M}(c, t) \stackrel{?}{=} 1$. If yes, then output $\operatorname{Dec}_{k_E}(c)$; if no, then output \bot .

A generic construction of an authenticated encryption scheme.

Throughout, let $\Pi_E = (\text{Enc}, \text{Dec})$ be a CPA-secure encryption scheme and let $\Pi_M = (\text{Mac}, \text{Vrfy})$ denote a message authentication code, where key generation in both schemes simply involves choosing a uniform *n*-bit key. There are three natural approaches to combining encryption and message authentication using independent keys⁴ k_E and k_M for Π_E and Π_M , respectively:

1. Encrypt-and-authenticate: In this method, encryption and message authentication are computed independently in parallel. That is, given a plaintext message m, the sender transmits the ciphertext $\langle c, t \rangle$ where:

 $c \leftarrow \mathsf{Enc}_{k_E}(m)$ and $t \leftarrow \mathsf{Mac}_{k_M}(m)$.

The receiver decrypts c to recover m; assuming no error occurred, it then verifies the tag t. If $Vrfy_{k_M}(m,t) = 1$, the receiver outputs m; otherwise, it outputs an error.

 $[\]overline{{}^{4}Independent}$ cryptographic keys should always be used when different schemes are combined. We return to this point at the end of this section.

Message Authentication Codes 133

2. Authenticate-then-encrypt: Here a MAC tag t is first computed, and then the message and tag are encrypted together. That is, given a message m, the sender transmits the ciphertext c computed as:

$$t \leftarrow \mathsf{Mac}_{k_M}(m)$$
 and $c \leftarrow \mathsf{Enc}_{k_E}(m||t)$.

The receiver decrypts c to obtain m||t; assuming no error occurs, it then verifies the tag t. As before, if $Vrfy_{k_M}(m,t) = 1$ the receiver outputs m; otherwise, it outputs an error.

3. Encrypt-then-authenticate: In this case, the message m is first encrypted and then a MAC tag is computed over the result. That is, the ciphertext is the pair $\langle c, t \rangle$ where:

$$c \leftarrow \mathsf{Enc}_{k_E}(m) \text{ and } t \leftarrow \mathsf{Mac}_{k_M}(c).$$

(See also Construction 4.18.) If $Vrfy_{k_M}(c,t) = 1$, then the receiver decrypts c and outputs the result; otherwise, it outputs an error.

Keyed MAC Adv. Dis ant. Critaralysis on tag Conference in Fo (=> faster computation) 0604t M Antenticate \mathcal{A} then milt provides la relationship which may be exploited by m||+ Encrypt information leakage through 5. Encrypt the tag reveals nothing about the message Authenticate 18 ©Georgia Institute of Technology, 2018-2024

Unkeyed MAC tais generated on ciphertext (an be recomputed by an adversary for charge in any ciphertext block

Let's leave unkeyed MAGS for lufer Jiscussion ...

Later Discussion!

- For a keyless hash intended to attest to the integrity of a message, which of the three approaches to combine encryption and message integrity are preferred and why?
- 1) Encrypt-and-authenticate
 - *c* := *Enc*_{*k*}(*m*), *t* := *H*^{*s*}(*m*), send <*c*,*t*>
- 2) Authenticate-then-encrypt
 - $t := H^{s}(m), c := Enc_{k}(m \parallel t), \text{ send } <c>$
- 3) Encrypt-then-authenticate
 - c := Enc_k(m), t := H^s(c), send <c,t>

DEFINITION 4.16 A private-key encryption scheme Π is unforgeable if for all probabilistic polynomial-time adversaries \mathcal{A} , there is a negligible function negl such that:

$$\Pr[\mathsf{Enc-Forge}_{\mathcal{A},\Pi}(n) = 1] \le \mathsf{negl}(n).$$

Paralleling our discussion about verification queries following Definition 4.2, here one could also consider a stronger definition in which \mathcal{A} is additionally given access to a decryption oracle. One can verify that the secure construction we present below also satisfies that stronger definition.

We now define a (secure) authenticated encryption scheme.

DEFINITION 4.17 A private-key encryption scheme is an authenticated encryption scheme if it is CCA-secure and unforgeable.

Forgeable Experiment . Fix A, TIM (n) . Experiment Forge A, Ty (n) 1. Kw Sen(1) 2. Adversary A interacts w MACK (let # M be a set of messages) (let # M be a set of messages) Submitted to the oracle 3. A SUCLECOS if $V(f_{\gamma}(m, +) = 1 a m d)$ ©Georgia Institute of Technology. 2018-2024 A outputs m, t

The unforgeable encryption experiment $Enc-Forge_{A,\Pi}(n)$:

1. Run $Gen(1^n)$ to obtain a key k.

- 2. The adversary \mathcal{A} is given input 1^n and access to an encryption oracle $\operatorname{Enc}_k(\cdot)$. The adversary outputs a ciphertext c.
- 3. Let $m := \text{Dec}_k(c)$, and let \mathcal{Q} denote the set of all queries that \mathcal{A} asked its encryption oracle. The output of the experiment is 1 if and only if (1) $m \neq \bot$ and (2) $m \notin \mathcal{Q}$.

4.4.1 The Basic Construction

CBC-MAC is a standardized message authentication code used widely in practice. A basic version of CBC-MAC, secure when authenticating messages of any *fixed* length, is given as Construction 4.11. (See also Figure 4.1.) We caution that this basic scheme is *not* secure in the general case when messages of different lengths may be authenticated; see further discussion below.

CONSTRUCTION 4.11

Let F be a pseudorandom function, and fix a length function $\ell > 0$. The basic CBC-MAC construction is as follows:

- Mac: on input a key $k \in \{0, 1\}^n$ and a message m of length $\ell(n) \cdot n$, do the following (we set $\ell = \ell(n)$ in what follows):
 - 1. Parse m as $m = m_1, \ldots, m_\ell$ where each m_i is of length n.
 - 2. Set $t_0 := 0^n$. Then, for i = 1 to ℓ : Set $t_i := F_k(t_{i-1} \oplus m_i)$.

Output t_{ℓ} as the tag.

Vrfy: on input a key k ∈ {0,1}ⁿ, a message m, and a tag t, do: If m is not of length l(n) · n then output 0. Otherwise, output 1 if and only if t = Mac_k(m).

Basic CBC-MAC (for fixed-length messages).

Secure CBC-MAC for arbitrary-length messages. We briefly describ two ways Construction 4.11 can be modified, in a provably secure fashior to handle arbitrary-length messages. (Here for simplicity we assume that a messages being authenticated have length a multiple of n, and that Vrfy reject

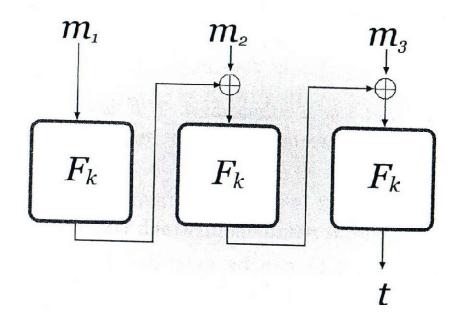


FIGURE 4.1: Basic CBC-MAC (for fixed-length messages).

Message Authentication Code	S
-----------------------------	---

CONSTRUCTION 4.5

Let F be a pseudorandom function. Define a fixed-length MAC for messages of length n as follows:

- Mac: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, output the tag $t := F_k(m)$. (If $|m| \neq |k|$ then output nothing.)
- Vrfy: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^n$, and a tag $t \in \{0,1\}^n$, output 1 if and only if $t \stackrel{?}{=} F_k(m)$. (If $|m| \neq |k|$, then output 0.)

A fixed-length MAC from any pseudorandom function.

THEOREM 4.6 If F is a pseudorandom function, then Construction 4.5 is a secure fixed-length MAC for messages of length n.

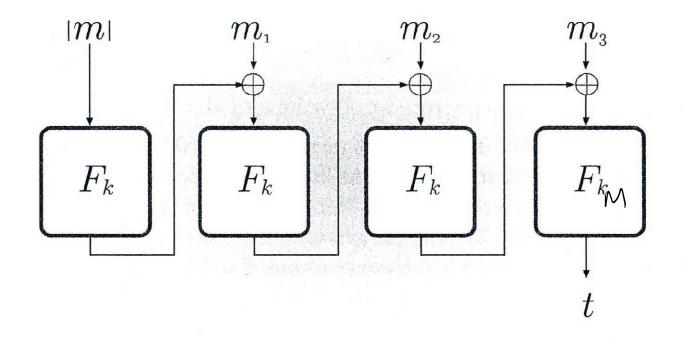


FIGURE 4.2: A variant of CBC-MAC secure for authenticating arbitrary-length messages.

CONSTRUCTION 4.7

Let $\Pi' = (Mac', Vrfy')$ be a fixed-length MAC for messages of length n. Define a MAC as follows:

• Mac: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^*$ of (nonzero) length $\ell < 2^{n/4}$, parse m into d blocks m_1, \ldots, m_d , each of length n/4. (The final block is padded with 0s if necessary.) Choose a uniform identifier $r \in \{0,1\}^{n/4}$.

For i = 1, ..., d, compute $t_i \leftarrow \mathsf{Mac}'_k(r||\ell||i||m_i)$, where i, ℓ are encoded as strings of length n/4.[†] Output the tag $t := \langle r, t_1, ..., t_d \rangle$.

• Vrfy: on input a key $k \in \{0,1\}^n$, a message $m \in \{0,1\}^*$ of length $\ell < 2^{n/4}$, and a tag $t = \langle r, t_1, \ldots, t_{d'} \rangle$, parse m into d blocks m_1, \ldots, m_d , each of length n/4. (The final block is padded with 0s if necessary.) Output 1 if and only if d' = dand $\operatorname{Vrfy}_k'(r \|\ell\| \|m_i, t_i) = 1$ for $1 \leq i \leq d$.

[†] Note that i and ℓ can be encoded using n/4 bits because $i, \ell < 2^{n/4}$.

A MAC for arbitrary-length messages from any fixed-length MAC.

Introduction to Modern Cryptography

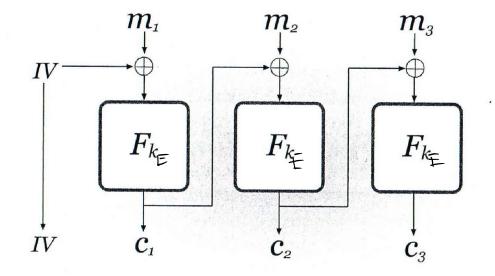


FIGURE 3.7: Cipher Block Chaining (CBC) mode.

Cipher Block Chaining (CBC) mode. To encrypt using this mode, a uniform initialization vector (IV) of length n is first chosen. Then, ciphertext blocks are generated by applying the block cipher to the XOR of the current plaintext block and the previous ciphertext block. That is, set $c_0 := IV$ and then, for i = 1 to ℓ , set $c_i := F_k(c_{i-1} \oplus m_i)$. The final ciphertext is $\langle c_0, c_1, \ldots, c_\ell \rangle$. (See Figure 3.7.) Decryption of a ciphertext c_0, \ldots, c_ℓ is done by computing $m := \frac{E^{-1}(c_0) \oplus c_1}{C}$

 $\angle (0, \zeta_1, \zeta_2, \zeta_3, +)$ $125 \times 5 = 640$