Cryptography Part VI: Diffie-Hellman *ECE 4156/6156 Hardware-Oriented Security and Trust*

Spring 2024
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Reading

- Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
- Handbook of Applied Cryptography, Chapter 12.6, pp. 515-523
- Introduction to Modern Cryptography, Chapters 8 and 10

Notation for Public Key Cryptography

- C_i is ciphertext message i
- P_i is plaintext message i
- E_{pk} is encryption with public key pk
 - Note that *E* is asymmetric
 - $E_{pk}(P_i) = C_i$
- D_{sk} is decryption with secret key sk
 - Note that *D* is asymmetric
 - $D_{sk}(C_i) = P_i$
- {X} is a set of elements of type X
- | is "such that"; e.g., integer $i \mid 3 < i < 5$ implies that i = 4

Diffie-Hellman Key Agreement

- Also called exponential key exchange
- Ralph Merkle invented the concept in the 1970s and named it after Whitfield Diffie and Martin Hellman
- One of the first public key cryptosystems
 - RSA
 - GHCQ claims
- Provides a shared key
- Does not provide authentication

Basic Diffie-Hellman Key Agreement Protocol

- Handbook of Applied Cryptography, pg. 516, 12.47
- Summary: Bob and Alice send each other one message over an untrusted channel
- Result: shared secret K known to Bob and Alice but no one else
- First step
 - An appropriate prime number p and generator α of \mathbb{Z}_p^* (where $2 \le \alpha \le p$ -2) are chosen and published

Some Mathematics Background

- Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
- $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
 - \mathbb{Z} is the set of integers and is an infinite set
- \mathbb{Z}_n are the integers modulo n
 - $\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}$
 - Mathematical operations (e.g., addition, subtraction and multiplication) in \mathbb{Z}_n are performed modulo n
- Definition of the Euler phi function $\mathcal{O}(n)$ (also known as the Euler totient function)
 - For $n \ge 1$, $\Phi(n)$ = the number of integers in [1,n] which are relatively prime to n
 - Two numbers a and b are said to be *relatively prime* or *coprime* if their greatest common divisor is one (if gcd(a,b) = 1)
- Facts
 - If p is prime, then $\Phi(p) = p-1$
 - The Euler phi function is multiplicative, i.e., if gcd(m,n) = 1, then $\Phi(mn) = \Phi(m)\Phi(n)$

Some Mathematics Background (cont'd 1)

- Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
- Definition
 - The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}$
 - In particular, if n is prime, then $\mathbb{Z}_n^* = \{a \mid 1 \le a \le n-1\}$
- Definition
 - The order of \mathbb{Z}_n^* is the number of elements in \mathbb{Z}_n^* , i.e., $|\mathbb{Z}_n^*|$
 - From the definition of the Euler phi function it follows that $|\mathbb{Z}_n^*| = \mathcal{O}(n)$
 - Note that if $a \in \mathbb{Z}_n^*$ and $b \in \mathbb{Z}_n^*$ then $a \cdot b \in \mathbb{Z}_n^*$, i.e., \mathbb{Z}_n^* is closed under multiplication (recall that all multiplication in \mathbb{Z}_n is mod n)
- Example 1: $\mathbb{Z}_{21}^* = \{1,2,4,5,8,10,11,13,16,17,19,20\}$
- Example 2: $\mathbb{Z}_{13}^* = \{1,2,3,4,5,6,7,8,9,10,11,12\}$

Some Mathematics Background (cont'd 2)

- Handbook of Applied Cryptography, Chapter 2.4, pp. 63-75
- Definition
 - If α is a generator of \mathbb{Z}_n^* , then $\mathbb{Z}_n^* = \{\alpha^i \bmod n \mid 0 \le i \le \emptyset(n) 1\}$
- Example
 - α = 6 is generator of \mathbb{Z}_{13}^*

i	0	1	2	3	4	5	6	7	8	9	10	11
$\alpha^i \mod 13$	1	6	10	8	9	2	12	7	3	5	4	11

• Recall that $\mathbb{Z}_{13}^* = \{1,2,3,4,5,6,7,8,9,10,11,12\}$

Now Back to Diffie-Hellman Key Exchange...

- First step
 - An appropriate prime number p and generator α of \mathbb{Z}_p^* (where $2 \le \alpha \le p$ -2) are chosen and published
- Protocol messages
 - Alice sends message to Bob: $\alpha^x \mod p$ (Step 1)
 - Bob send message to Alice: $\alpha^y \mod p$ (Step 2)
- Protocol actions each time a shared key is required
 - Alice chooses a random secret x, $1 \le x \le p-2$, and carries out Step 1
 - Bob chooses a random secret y, $1 \le y \le p-2$, and carries out Step 2
 - Bob receives $\alpha^x \mod p$ and computes the shared secret $K = (\alpha^x \mod p)^y \mod p = (\alpha^x)^y \mod p$
 - Alice receives $\alpha^y \mod p$ and computes the shared secret $K = (\alpha^y \mod p)^x \mod p = (\alpha^y)^x \mod p$

Diffie-Hellman Key Exchange Preserves Forward Secrecy

- If the adversary obtains shared secret K_i
 - e.g., through a lucky guess or through an insider (or any other means!)
- Result: shared secret K_j in the future is not also given away
- This is not true of other schemes
 - e.g., in an RSA public-private key scheme
 - giving away the private key does compromise future communications