
Cryptography Part V: Secret Sharing
ECE 4156/6156 Hardware-Oriented

Security and Trust
Spring 2024

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024

Reading
• Handbook of Applied Cryptography, Chapter 12.7, pp. 524-528
• Introduction to Modern Cryptography, Chapter 13.3, pp. 501-507

©Georgia Institute of Technology, 2018-2024

Background
• Consider a situation where you want to require t out of N users to

make a request or else the request is not granted
• For example, consider a safe vault with secret documents and N executive

officers
• E.g., N = 5

• The policy may be to require t of the N officers to open the safe vault
• E.g., t = 3

• Other similar situations may exist with missile codes, encryption keys
(e.g., in a secure boot process), passwords distributed geographically
among several servers, and other financial/bank account scenarios

©Georgia Institute of Technology, 2018-2024

Some Initial Cases
• Case #1: t = N

• Suppose we use an l-bit number where N « 2l

• Choose t = N l-bit numbers si uniformly at random – note that each is called a “share”
• s1, …, si, …, sN – note that each si is called a “share” of the secret
• Define the secret s to be s = s1 … si … sN

• Clearly, all t = N users’ secrets are needed to recover s
• Also, any set of N-1 users’ secrets reveals nothing about s

• This “reveals nothing” claim can be statistically proven
• You can also see this by trying to devise an attack

• Naive approach
• For example, consider a 128-bit key divided into eight locations on a chip for secure boot
• You might say let’s divide this into 16-bit numbers, i.e., |si|=16 for each “share”

• But now suppose that the adversary finds seven of the locations
• With brute force effort, the 128-bit key can be guessed in 216=65,536 steps which can be < 1 second

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

Cases Where t < N
• Case #2: t < N

• There are two subcases
• Exactly t users’ shares are needed to open the safe (more generally, obtain the secret)
• t or more than t users’ shares can be quickly combined to open the safe

• Can we use the XOR based approach (see previous page)?
• Consider N = 6

• There are 15 combinations of two people A and B: A&B, A&C, A&D, A&E, A&F, B&C, B&D, B&E, B&F,
C&D, C&E, C&F, D&E, D&F, E&F

• There are 6
3

=
!

! !
=

∗ ∗ ∗ ∗ ∗

∗ ∗ (∗ ∗)
= 20 combinations of three people

• Et cetera
• Conclusion: for allowing any three out of six executives to open a safe, each executive would

have to be issued 20 keys with the safe performing 20 comparisons in the worst case each
time the safe is opened

• In Computer Science, the XOR based approach is not considered “efficient”

Efficient Secret Sharing for t < N

• Example case for t = 2

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

Efficient Secret Sharing

• Mathematics for efficient secret sharing was simultaneously and
independently developed by Adi Shamir (of RSA fame) and George
Blakley in 1979

• Blakley, G.R. (1979). "Safeguarding Cryptographic Keys" (PDF). Managing
Requirements Knowledge, International Workshop on (AFIPS). 48: 313–
317. doi:10.1109/AFIPS.1979.98

• Shamir, Adi (1 November 1979). "How to share a secret". Communications of
the ACM. 22 (11): 612–613. doi:10.1145/359168.359176

• https://en.wikipedia.org/wiki/Secret_sharing

©Georgia Institute of Technology, 2018-2024

