Cryptography Part V: Secret Sharing
 ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney III Georgia Institute of Technology

Reading

- Handbook of Applied Cryptography, Chapter 12.7, pp. 524-528
- Introduction to Modern Cryptography, Chapter 13.3, pp. 501-507

Background

- Consider a situation where you want to require t out of N users to make a request or else the request is not granted
- For example, consider a safe vault with secret documents and N executive officers
- E.g., $N=5$
- The policy may be to require t of the N officers to open the safe vault
- E.g., $t=3$
- Other similar situations may exist with missile codes, encryption keys (e.g., in a secure boot process), passwords distributed geographically among several servers, and other financial/bank account scenarios

Some Initial Cases

- Case \#1: $t=N$
- Suppose we use an ℓ-bit number where $N \ll 2^{\ell}$
- Choose $t=N$-bit numbers s_{i} uniformly at random - note that each is called a "share"
- $s_{1}, \ldots, s_{i}, \ldots, s_{N}$ - note that each s_{i} is called a "share" of the secret
- Define the secret s to be $s=s_{1} \oplus \ldots \oplus s_{i} \oplus \ldots \oplus s_{N}$
- Clearly, all $t=N$ users' secrets are needed to recover s
- Also, any set of $N-1$ users' secrets reveals nothing about s
- This "reveals nothing" claim can be statistically proven
- You can also see this by trying to devise an attack
- Naive approach
- For example, consider a 128-bit key divided into eight locations on a chip for secure boot
- You might say let's divide this into 16 -bit numbers, i.e., $\left|s_{i}\right|=16$ for each "share"
- But now suppose that the adversary finds seven of the locations
- With brute force effort, the 128 -bit key can be guessed in $2^{16}=65,536$ steps which can be <1 second

Cases Where $t<N$

- Case \#2: $t<N$
- There are two subcases
- Exactly t users' shares are needed to open the safe (more generally, obtain the secret)
- t or more than t users' shares can be quickly combined to open the safe
- Can we use the XOR based approach (see previous page)?
- Consider $N=6$
- There are 15 combinations of two people A and $B: A \& B, A \& C, A \& D, A \& E, A \& F, B \& C, B \& D, B \& E, B \& F$, C\&D, C\&E, C\&F, D\&E, D\&F, E\&F
- There are $\binom{6}{3}=\frac{6!}{3!(6-3)!}=\frac{6 * 5 * 4 * 3 * 2 * 1}{3 * 2 * 1(3 * 2 * 1)}=20$ combinations of three people
- Et cetera
- Conclusion: for allowing any three out of six executives to open a safe, each executive would have to be issued 20 keys with the safe performing 20 comparisons in the worst case each time the safe is opened
- In Computer Science, the XOR based approach is not considered "efficient"

Efficient Secret Sharing for $t<N$

- Example case for $t=2$

Efficient Secret Sharing

- Mathematics for efficient secret sharing was simultaneously and independently developed by Adi Shamir (of RSA fame) and George Blakley in 1979
- Blakley, G.R. (1979). "Safeguarding Cryptographic Keys" (PDF). Managing Requirements Knowledge, International Workshop on (AFIPS). 48: 313317. doi:10.1109/AFIPS. 1979.98
- Shamir, Adi (1 November 1979). "How to share a secret". Communications of the ACM. 22 (11): 612-613. doi:10.1145/359168.359176
- https://en.wikipedia.org/wiki/Secret_sharing

