Cryptography Part IV: Encryption Modes *ECE 4156/6156 Hardware-Oriented Security and Trust*

Spring 2024
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Reading Assignment

- Please read Chapter 3 of the course textbook by Katz and Lindell
- Please read Chapter 2 of the course textbook by Menezes, Oorschot and Vanstone, i.e., the <u>Handbook of Applied Cryptography</u>
 - Note: this book will be referred to later in these notes as "HAC"

Notation from HAC (pages 49 and 50)

- \mathbb{R} is the set of real numbers, e.g., $\pi \in \mathbb{R}$ while $\sqrt{-1} \notin \mathbb{R}$
- \mathbb{Z} is the set of integers, i.e., $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $f: A \to B$ is a function that maps each $a \in A$ to precisely one $b \in B$. Given that f(a) = b, then b is called the *image* of a, and a is called the *preimage* of b. The set A is called the *domain* of f.
- A function $f: A \to B$ is 1-1 (one-to-one) or injective if each element in B is the image of at most one element in A. Hence $f(a_1) = f(a_2)$ implies $a_1 = a_2$.
- A function $f: A \to B$ is onto or surjective if each $b \in B$ is the image of at least one $a \in A$.
- A function $f: A \to B$ is a *bijection* if it is both one-to-one and onto. If f is a bijection between finite sets A and B, then |A| = |B|. If f is a bijection between a set A and itself, then f is called a *permutation* on A.

Additional Notation (from Prof. Mooney)

- \mathbb{N} is the set of natural numbers, i.e., $\mathbb{N} = \{1,2,3,...\}$
- $f: A \to B$ is a function that maps each $a \in A$ to precisely one $b \in B$. Given that f(a) = b, then b is called the *image* of a, and a is called the *preimage* of b. The set A is called the *domain* of f. The set B is called the *range* of f.

Notation from Katz and Lindell

- {X} is a set of elements of type X
- *m* is a message in plaintext
 - m is composed of smaller blocks m_i suitable for individual encryption steps
 - $m = \{m_i\}$
- c_i is ciphertext corresponding to message block m_i
- c is ciphertext corresponding to message m
- Enc_k is encryption with key k
 - $c \leftarrow Enc_k(m)$ (NOTE: there may be multiple valid ciphertexts!!!)
 - $c := Enc_k(m)$ (NOTE: deterministic, i.e., there is only one valid ciphertext)
- Dec_k is decryption with key k
 - $m := Dec_k(c)$ (NOTE: deterministic, i.e., there is only one valid message)
- <a,b> is a concatenation of a followed by b
- $a \mid b$ is unambiguous concatenation of a followed by b; "unambiguous concatenation" means that a and b can be recovered from $a \mid b$

Notation from Katz and Lindell (continued)

- PrivK is an experiment involving a private key
- A is an adversary
- eav refers to eavesdropping and obtaining ciphertext only
- π = (Gen, Enc, Dec) is an encryption scheme
- $\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}$ is an experiment involving a private key encryption scheme π with an adversary A only with access to ciphertext
- $\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}(n)$ is an experiment involving a private key encryption scheme π with a key of size n and an adversary A only with access to ciphertext
- $\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}(n,0)$ is an experiment involving a private key encryption scheme π with a key of size n, message selection bit b=0 and an adversary A only with ciphertext¹
- ullet A does not have access to additional information, e.g., A does not have valid plaintext-ciphertext pairs obtained through other means
- Probabilistic Polynomial Time or PPT refers to algorithms which take at most polynomial time while having free use of a true random number generator

Recall Slide 11 from Crypto I Lecture

- *M* is a set of all possible messages, i.e., the message space
- C is a set of all possible ciphertexts, i.e., the ciphertext space
- Gen is a key generation procedure
 - The output of *Gen* is key *k*
 - Gen may or may not require an input

Now We Add the Following

- K is a set of all possible keys, i.e., the key space
- In the one-time pad, $|K| = |M| = |C| = \ell$

Where We Are So Far: Status

DEFINITION 2.5 Encryption scheme π = (Gen, Enc, Dec) with message space M is **perfectly indistinguishable** if for every A it holds that

$$\Pr\left[\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}=1\right]=\frac{1}{2}.$$

Where We Are So Far: Status

DEFINITION 2.5 Encryption scheme π = (Gen, Enc, Dec) with message space M is **perfectly indistinguishable** if for every A it holds that

$$\Pr\left[\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}=1\right]=\frac{1}{2}.$$

DEFINITION 3.8 A private-key encryption scheme π = (Gen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-secure, if for all PPT adversaries A there is a negligible function negl such that, for all n,

$$\Pr\left[\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over the randomness used by A and the randomness used in the experiment (for choosing the key and bit b, as well as any randomness used by Enc).

Where We Are So Far: Status

DEFINITION 3.8 A private-key encryption scheme π = (Gen, Enc, Dec) has **indistinguishable encryptions in the presence of an eavesdropper**, or is EAV-secure, if for all PPT adversaries A there is a negligible function negl such that, for all n,

$$\Pr\left[\operatorname{PrivK}_{A,\pi}^{\operatorname{eav}}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over the randomness used by A and the randomness used in the experiment (for choosing the key and bit b, as well as any randomness used by Enc).

Where We Are So Far: Status (continued)

DEFINITION 3.9 A private-key encryption scheme π = (Gen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper if for all PPT adversaries A there is a negligible function negl such that

$$\left| \Pr \left[\mathsf{out}_A(\mathsf{PrivK}_{A,\pi}^{\mathsf{eav}}(n,0)) = 1 \right] - \Pr \left[\mathsf{out}_A(\mathsf{PrivK}_{A,\pi}^{\mathsf{eav}}(n,1)) = 1 \right] \right| \le \mathsf{negl}(n).$$

Where We Are So Far: Status (continued)

DEFINITION 3.9 A private-key encryption scheme π = (Gen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper if for all PPT adversaries A there is a negligible function negl such that

$$\left| \Pr \left[\mathsf{out}_A(\mathsf{PrivK}_{A,\pi}^{\mathsf{eav}}(n,0)) = 1 \right] - \Pr \left[\mathsf{out}_A(\mathsf{PrivK}_{A,\pi}^{\mathsf{eav}}(n,1)) = 1 \right] \right| \le \mathsf{negl}(n).$$

THEOREM 3.10 Let π = (Enc, Dec) be a fixed-length private-key encryption scheme for messages of length ℓ that has indistinguishable encryptions in the presence of an eavesdropper. Then for all PPT adversaries A and any $i \in \{1,...,\ell\}$, there is a negligible function negl such that

$$\Pr\left[A(1^n, \operatorname{Enc}_k(m)) = m^i\right] \le \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over uniform $m \in \{0,1\}^{\ell}$ and $k \in \{0,1\}^n$, the randomness of A, and the randomness of Enc.

Where We Are So Far: Status (continued)

THEOREM 3.10 Let π = (Enc, Dec) be a fixed-length private-key encryption scheme for messages of length ℓ that has indistinguishable encryptions in the presence of an eavesdropper. Then for all PPT adversaries A and any $i \in \{1,...,\ell\}$, there is a negligible function negl such that

$$\Pr\left[A(1^n, \operatorname{Enc}_k(m)) = m^i\right] \le \frac{1}{2} + \operatorname{negl}(n),$$

where the probability is taken over uniform $m \in \{0,1\}^{\ell}$ and $k \in \{0,1\}^n$, the randomness of A, and the randomness of Enc.

DEFINITION 3.14 Let ℓ be a polynomial and let G be a deterministic polynomial-time algorithm such that for any n and any input $s \in \{0,1\}^n$, the result G(s) is a string of length $\ell(n)$. We say that G is a pseudorandom generator if the following conditions hold:

- 1. (Expansion:) For every n it holds that $\ell(n) > n$.
- 2. (Pseudorandomness:) For any PPT algorithm D, there is a negligible function negl such that

$$\left|\Pr[D(G(s)) = 1] - \Pr[D(r) = 1]\right| \le \mathsf{negl}(n),$$

where the first probability is taken over uniform choice of $s \in \{0,1\}^n$ and the randomness of D, and the second probability is taken over uniform choice of $r \in \{0,1\}^{\ell(n)}$ and the randomness of D.

We call ℓ the expansion factor of G.

ALGORITHM 3.16

Constructing G_ℓ from (Init, GetBits)

Input: Seed s and optional initialization vector IV

Output: y_1, \ldots, y_ℓ

 $\mathsf{st}_0 := \mathsf{Init}(s, IV)$

for i = 1 to ℓ :

 $(y_i, \mathsf{st}_i) := \mathsf{GetBits}(\mathsf{st}_{i-1})$

return y_1, \ldots, y_ℓ

Let G be a pseudorandom generator with expansion factor ℓ . Define a private-key encryption scheme for messages of length ℓ as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it as the key.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^{\ell(n)}$, output the ciphertext $c := G(k) \oplus m$.
- Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c \in \{0,1\}^{\ell(n)}$, output the message $m := G(k) \oplus c$.

A private-key encryption scheme based on any pseudorandom generator.

THEOREM 3.18 If G is a pseudorandom generator, then Construction 3.17 is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

PROOF Let Π denote Construction 3.17. We show that Π satisfies Definition 3.8. Namely, we show that for any probabilistic polynomial-time adversary \mathcal{A} there is a negligible function negl such that

$$\Pr\left[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] \le \frac{1}{2} + \mathsf{negl}(n). \tag{3.2}$$

Result(s)

- Given a pseudorandom number generator (PRNG) G
 - An exact example has yet to be provided
 - Definition 3.14, however, provides a framework to evaluate pseudorandom number generators
 - A PRNG efficiently expands a uniform (random) seed into a much larger pseudorandom output
 - Keeping the output length under a specified length provides number sequences which have no currently known way to be efficiently distinguished from a truly random number sequence
 - After the length is reached, use a new seed; note also the seed should be large, e.g., 128 bits, so than an adversary cannot guess the seed with any non-negligible probability of success
 - The seeds should be generated by a truly random physical process
 - No formal proof that PRNG's exist has been provided; but many practical constructions exist
- Construction 3.17 defines an encryption scheme π using G
- Theorem 3.18 proves that Construction 3.17 is EAV-secure

box" that encrypts messages of \mathcal{A} 's choice using a key k that is unknown to \mathcal{A} . That is, we imagine \mathcal{A} has access to an "oracle" $\mathsf{Enc}_k(\cdot)$; when \mathcal{A} queries this oracle by providing it with a message m as input, the oracle returns a ciphertext $c \leftarrow \mathsf{Enc}_k(m)$ as the reply. (When Enc is randomized, the oracle uses fresh randomness each time it answers a query.) The adversary is allowed to interact with the encryption oracle adaptively, as many times as it likes.

Consider the following experiment defined for any encryption scheme $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$, adversary \mathcal{A} , and value n for the security parameter:

The CPA indistinguishability experiment $PrivK_{A,\Pi}^{cpa}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$, and outputs a pair of messages m_0, m_1 of the same length.
- 3. A uniform bit $b \in \{0,1\}$ is chosen, and then a ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to A.
- 4. The adversary A continues to have oracle access to $Enc_k(\cdot)$, and outputs a bit b'.
- 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. In the former case, we say that A succeeds.

DEFINITION 3.22 A private-key encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-secure, if for all probabilistic polynomial-time adversaries $\mathcal A$ there is a negligible function negl such that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n),$$

where the probability is taken over the randomness used by A, as well as the randomness used in the experiment.

This Concludes Where We Are So Far!!!

Construction 3.17 is not CPA-secure

• Why?

Construction 3.17 is not CPA-secure

- Why?
- In the CPA indistinguishability experiment $\operatorname{PrivK}_{A,\pi}^{\operatorname{cpa}}(n)$ step 2 provides oracle access to $\operatorname{Enc}_k(\cdot)$
 - (see page 74 of Katz and Lindell for the full list of steps)
 - Note that even though key k is secret, the adversary nonetheless has access to $\mathrm{Enc}_k(\cdot)$
- In step 4 the adversary continues to have oracle access prior to issuing a decision
- Clearly the adversary can simply compute $\operatorname{Enc}_k(m_0)$ and $\operatorname{Enc}_k(m_1)!$

Keyed Functions²

- A keyed function $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ has two inputs where the first is the key k
- Typically the inputs and output all have the same size n
 - Given key k, the keyed function is F_k
 - Then we have $F_k: \{0,1\}^n \to \{0,1\}^n$ where $F_k(x) = F(k,x)$

Pseudorandom Functions

- Keyed function F_k is a **pseudorandom function** if for all PPT distinguishers D the chance that D can distinguish F_k is from a uniform function f is negligible.³
 - Note that a uniform function is not necessarily bijective
 - If $F_k: \{0,1\}^n \to \{0,1\}^n$, the comparable uniform function $f: \{0,1\}^n \to \{0,1\}^n$ may possibly have f(x) = f(y) for $x \neq y$ with probability $\frac{1}{2^n}$

Pseudorandom Permutation

- Keyed function F_k is a **pseudorandom permutation** if for all PPT distinguishers D the chance that D can distinguish F_k is from a uniform permutation f is negligible.⁴
 - Function $f:\{0,1\}^n \to \{0,1\}^n$ is a uniform permutation if it is bijective.
- In practice, for sufficiently large n, the distinction between a uniform function and a uniform permutation is indistinguishable.⁴

- A uniform function $f: \{0,1\}^n \to \{0,1\}^n$ is deterministic, i.e., for each input the output is defined, known and does not change
- The inverse of a uniform function $f: \{0,1\}^n \to \{0,1\}^n$, i.e., $f^{-1}: \{0,1\}^n \to \{0,1\}^n$ is typically not going to be deterministic because there may be an input with multiple valid outputs
- The inverse of a uniform function $f: A \to B$, i.e., $f^{-1}: B \to A$ is typically not going to be deterministic because there may be an input with multiple valid outputs

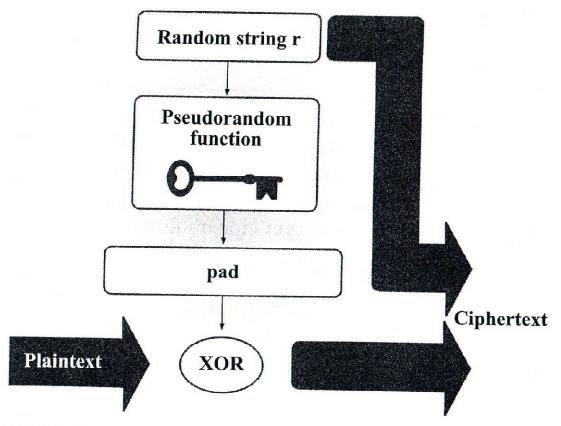


FIGURE 3.3: Encryption with a pseudorandom function.

Let F be a pseudorandom function. Define a stream cipher (Init, GetBits), where each call to GetBits outputs n bits, as follows:

- Init: on input $s \in \{0,1\}^n$ and $IV \in \{0,1\}^n$, set $\mathsf{st}_0 := (s,IV)$.
- GetBits: on input $\operatorname{st}_i = (s, IV)$, compute IV' := IV + 1 and set $y := F_s(IV')$ and $\operatorname{st}_{i+1} := (s, IV')$. Output $(y, \operatorname{st}_{i+1})$.

A stream cipher from any pseudorandom function/block cipher.

Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext

$$c := \langle r, F_k(r) \oplus m \rangle.$$

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s$$
.

A CPA-secure encryption scheme from any pseudorandom function.

Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it.
- Enc: on input a key $k \in \{0,1\}^n$ and a message $m \in \{0,1\}^n$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext

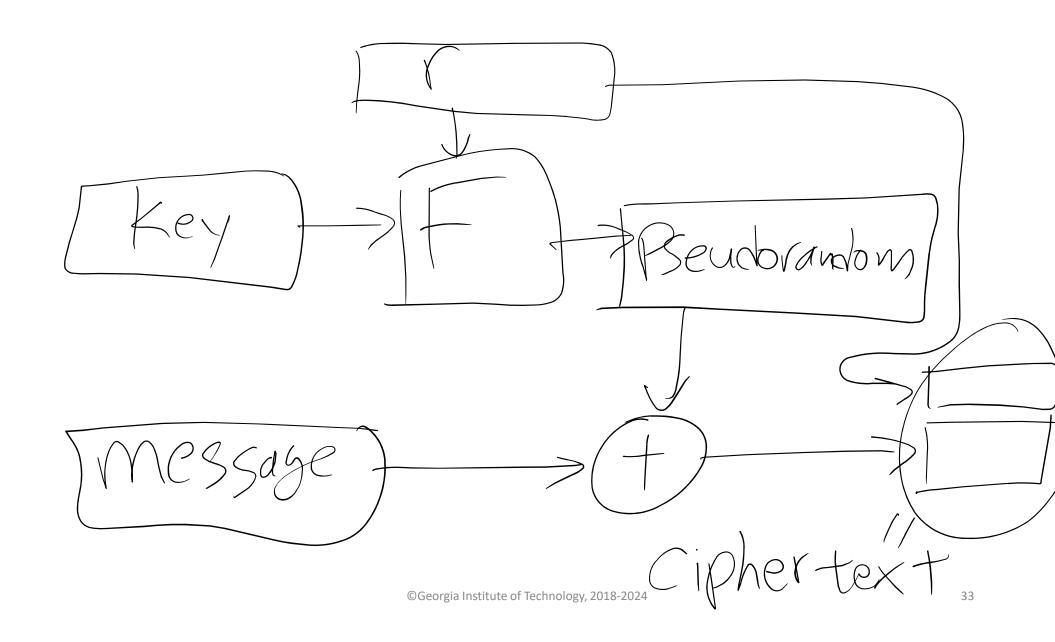
$$c := \langle r, F_k(r) \oplus m \rangle.$$

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c = \langle r, s \rangle$, output the plaintext message

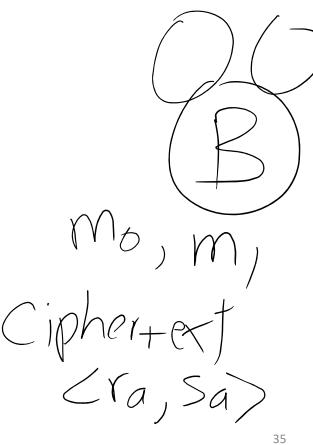
$$m := F_k(r) \oplus s$$
.

A CPA-secure encryption scheme from any pseudorandom function.

©Georgia Institute of Technology, 2018-2024



©Georgia Institute of Technology, 2018-2024



Given F is Pseudorandom, Construction 3.30 is CPA-secure

- I hereby state the following:
- "The book goes through the proof in more detail, I just want you to get the intuition behind why Construction 3.30 is CPA-secure...I am not going to assign the proof on a homework or a test, guaranteed, ..., however, **understanding** the intuition behind the proof is required and could be asked on a homework or a test!"

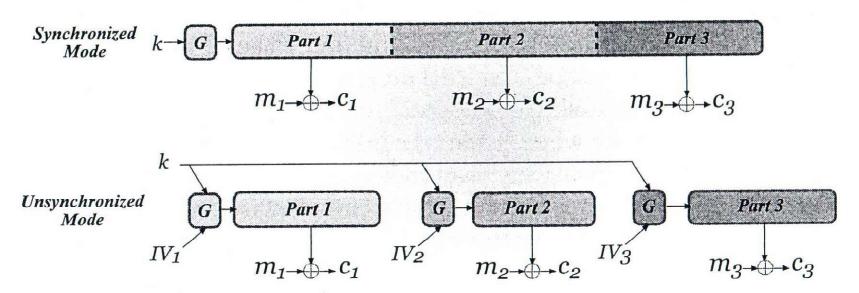


FIGURE 3.4: Synchronized mode and unsynchronized mode.

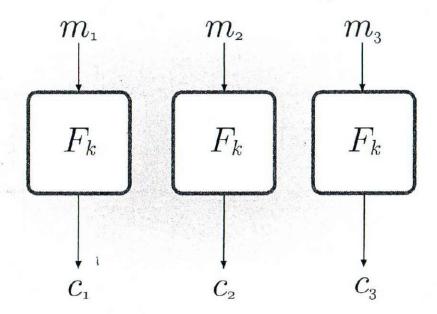
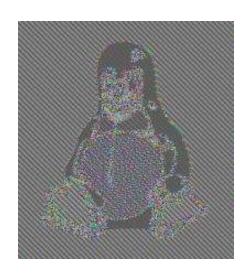


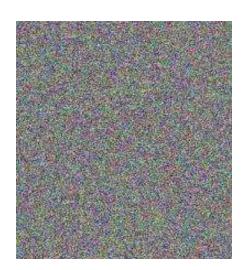
FIGURE 3.5: Electronic Code Book (ECB) mode.

Figure 3.5. Decryption is done in the obvious way, using the fact that F_k^{-1} is efficiently computable.

 $C_1 = E_1 \subset E_2 \subset E_3$ $C_{2} = EKL (M_{2})$ $C_{3} = EKL (M_{2})$ The City of Technology, 2018-2024 For these reasons, ECB mode should never be used. (We include it only because of its historical significance.)

FÍGURE 3.6: An illustration of the dangers of using ECB mode. The middle figure is an encryption of the image on the left using ECB mode; the figure on the right is an encryption of the same image using a secure mode. (Taken from http://en.wikipedia.org and derived from images created by Larry Ewing (lewing@isc.tamu.edu) using The GIMP.)





² From https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation and available under an open source license from Creative Commons.

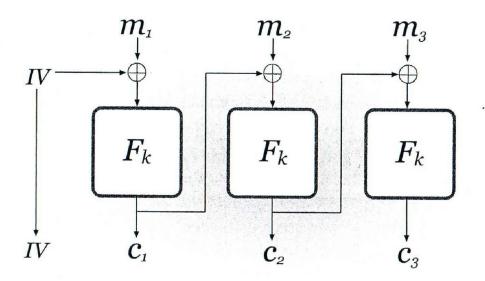


FIGURE 3.7: Cipher Block Chaining (CBC) mode.

Cipher Block Chaining (CBC) mode. To encrypt using this mode, a uniform initialization vector (IV) of length n is first chosen. Then, ciphertext blocks are generated by applying the block cipher to the XOR of the current plaintext block and the previous ciphertext block. That is, set $c_0 := IV$ and then, for i = 1 to ℓ , set $c_i := F_k(c_{i-1} \oplus m_i)$. The final ciphertext is $\langle c_0, c_1, \ldots, c_\ell \rangle$. (See Figure 3.7.) Decryption of a ciphertext c_0, \ldots, c_ℓ is done by computing $m := \frac{E^{-1}(c_0) \cap C_0}{\mathbb{C}}$ institute of Technology, 2018-2024



FIGURE 3.8: Chained CBC.

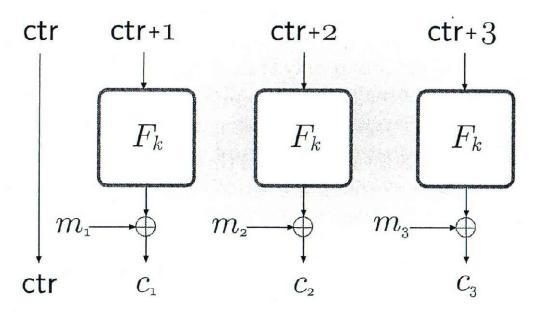


FIGURE 3.10: Counter (CTR) mode.

Counter (CTR) mode. Counter mode can also be viewed as an unsynchronized stream-cipher mode, where the stream cipher is constructed from the block cipher as in Construction 3.29. We give a self-contained description here. To encrypt using CTR mode, a uniform value $ctr \in \{0,1\}^n$ is first chosen. Then, a pseudorandom stream is generated by computing $y_i := F_k(ctr + i)$,

Multiple Encryptions

- Ch. 3.4 of Katz and Lindell defines a multiple-message eavesdropping experiment ${\rm Priv}{\rm K}_{A,\pi}^{\rm mult}$
- Note that this multiple-message experiment $\text{PrivK}_{A,\pi}^{\text{mult}}$ is different than $\text{PrivK}_{A,\pi}^{\text{eav}}$ defined earlier (indistinguishable encryptions)!
- The end result is that $\mathrm{Priv} \mathrm{K}^{\mathrm{eav}}_{A,\pi}$ is not very useful as a standalone criterion
 - However, $PrivK_{A,\pi}^{eav}$ is useful as a building block with formal properties!
- In practice $\mathrm{PrivK}^{\mathrm{cpa}}_{A,\pi}$ is the weakest experiment / definition of interest

THEOREM 3.21 If π is a (stateless)⁵ encryption scheme in which Enc is a deterministic function of the key and the message, then π cannot have indistinguishable multiple encryptions in the presence of an eavesdropper.

⁵ Note the ECB is stateless but the rest of the modes presented, including CBC and CTR (and variations w.r.t. the initial vector IV, etc.) are *stateful*.