Cryptography Part lll: Indistinguishability
ECE 4156/6156 Hardware-Oriented Security

and Trust
Spring 2024

Assoc. Prof. Vincent John Mooney Il

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024



Reading Assignment

* Please read Chapter 3 of the course textbook by Katz and Lindell

* Please read Chapter 2 of the course textbook by Menezes, Oorschot
and Vanstone, i.e., the Handbook of Applied Cryptography
* Note: this book will be referred to later in these notes as “HAC”




Notation from HAC (page 49)

* Ris the set of real numbers

°eg., Tl
 vV—1is not a real number but is imaginary, i.e., V-1 € R

e 7 is the set of integers, i.e., Z ={...,-3,-2,-1,0,1,2,3,...}

* f: A - B isafunction that maps each a € A to precisely one b € B.
Given that f(a) = b, then b is called the image of a, and a is called

the preimage of b.

Additional Notation (from Prof. Mooney)

* N is the set of natural numbers, i.e., N ={1,2,3,...}



Notation from Katz and Lindell

* {X}is a set of elements of type X

* mis a message in plaintext
* m is composed of smaller blocks m; suitable for individual encryption steps

*m=im;}
* ¢;is ciphertext corresponding to message block m.
* cis ciphertext corresponding to message m
* Enc, is encryption with key k
* ¢ < Enc,(m)
* Dec, is decryption with key k
* m <« Dec,(c)
e <ag,b> is a concatenation of a followed by b



Negligible success probability. A negligible function is one that is asymp-
totically smaller than any inverse polynomial function. Formally:

DEFINITION 3.4 A function f from the natural numbers to the non-
negatie real numbers is negligible if for every positive polynomial p there is

an N such that for all integers n > N it holds that f(n) < H::TJ'

For shorthand, the above is also stated as follows: for every polynomial p
and all sufficiently large values of n it holds that f(n) < ﬁ. An equivalent
formulation of the above is to require that for all constants ¢ there exists an
N such that for all n > N it holds that f(n) < n™¢. We typically denote an

arbitrary negligible function by negl.

Example 3.5
The functions 277,27 V"™ and n~ 1987 are all negligible. However, they ap-
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the hundreds or thousands, an advérsarial success probability of n—logn g
preferable to an adversarial success probability of 2—v7. &

A technical advantage of working with negligible success probabilities is
that they obey certain closure properties. The following is an easy exercise.

PROPOSITION 3.6 [et negl, and negl, be negligible Junctions. Then,
1.. The function negly defined by neglz(n) = negl, (n)+negly(n) is negligible.

2. For any positive polynomial p, the function negl, defined by negly(n) =
p(n) - negly(n) is negligible.

The second part of the above proposition implies that if a certain event oc-
curs with only negligible probability in a certain experiment, then the event
occurs with negligible probability even if the experiment is repeated polyno-
mially many times. (This relies on the 1ninn hatnd: e Deoe ——tee & ;o
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DEFINITION 3.7 A private-key encryption scheme is a tuple of proba-
bilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input 1™ (i.e., the security
parameter written in unary) and outputs a key k; we write k < Gen(1™)
(emphasizing that Gen is a randomized algorithm). We assume without
loss of generality that any key k output by Gen(1™) satisfies |k| > n.

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m € {0,1}*, and outputs a ciphertext c. Since Enc may be
randomized, we write this as ¢ < Enci(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c,
and outputs a message m or an error. We assume that Dec s deter-
manistic, and so write m := Decg(c) (assuming here that Dec does not
return an error). We denote a generic error by the symbol L.

It is required that for every n, every key k output by Gen(1™), and every
m € {0,1}*, it holds that Deck(Encg(m)) = m.

If (Gen, Enc, Dec) is such that for k output by Gen(1™), algorithm Ency is
only defined for messages m € {0,1}*("), then we say that (Gen, Enc, Dec) is
a fixed-length private-key encryption scheme for messages of length £(n).

Almost always, Gen(1™) simply outputs a uniform n-bit string as the key.
When this is the case, we will omit Gen and simply define a private-key en-
cryption scheme by a pair of algorithms (Enc, Dec).



Notation

* PrivK is an experiment involving a private key

* Ais an adversary

* eav refers to eavesdropping and obtaining ciphertext only
* t = (Gen, Enc, Dec) is an encryption scheme

. PriVKﬁf"T‘c’ is an experiment involving a private key encryption

scheme 7 with an adversary A only with access to ciphertext

» A does not have access to additional information, e.g., A does not
have valid plaintext-ciphertext pairs obtained through other means
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1. We now consider only adversaries running in polynomial time, whereas
Definition 2.5 considered even adversaries with unbounded running time.

2. We now concede that the adversary might determine the encrypted mes-
sage with probability negligibly better than 1/2.

As discussed extensively in the previous section, the above relaxations consti-
tute the core elements of computational security.

As for the other differences, the most prominent is that we now parame-
terize the experiment by a security parameter n. We then measure both the
running time of the adversary A as well as its success probability as functions

eav

of n. We write PrivKy';(n) to denote the experiment being run with security
parameter n, and write |

Pr([PrivK{ 1 (n) = 1] (3.1)

to denote the probability that the output of experiment PrivK{'(n) is 1.
Note that with A, II fixed, Equation (3.1) is a function of n.

A second difference in experiment PrivK’{’ is that we now explicitly re-
quire the adversary to output two messages mo, m1 of equal length. (In Def-
inition 2.5 this requirement is implicit if the message space M only contains
messages of some fixed length, as is the case for the one-time pad encryption
scheme.) This means that, by default, we do not require a secure encryption
scheme to hide the length of the plaintext. We revisit this point at the end of

this section; see also Exercises 3.2 and 3.3.



Notation

* 1™ denotes 1 repeated n times, e.g., for n = 5 then we have that
T=11111

* Note that in Professor Mooney’s opinion sometimes Katz and Lindell use 1™
when n would have been just as clear (or even more clear!)

e bisabit, i.e., itis possiblethatb =1orb =0

* b'is a bit, i.e., it is possiblethatb’ = 1orb' =0
* Note that in Katz and Lindell the apostrophe ' does not signify
complementation!
« In other words, b’ is just another variable such as b
 As a result, it is possible to have both b = 1and b’ =1
* Itis also possible to have bothb = 0and b’ =0



Indistinguishability in the presence of an eavesdropper. We now give
the formal definition, beginning with the experiment outlined above. The ex-
periment is defined for any private-key encryption scheme IT = (Gen, Enc, Dec),
any adversary A, and any value n for the security parameter:

eav

The adversarial indistinguishability experiment PrivK7;(n):

1. The adversary A is given input 1™, and outputs a pair of
messages mo, m1 with |mg| = |ma|.
2. A key k is generated by running Gen(1™), and a uniform bit

b € {0,1} is chosen. Ciphertext ¢ «— Encg(mp) is computed
and given to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b'.

4. The output of the experiment is defined to be 1 if b’ =b, and
0 otherwise. If PrivK%'q(n) = 1, we say that A succeeds.

There is no limitation on the lengths of my and m;, as long as they are the
same. (Of course, if A runs in polynomial time, then mg and m; have length
polynomial in n.) If II is a fixed-length scheme for messages of length £(n),

the above experiment is modified by requiring mg, m1 € {0, 1}3(”). "



Notation

* EAV-secure refers to secure against ciphertext only attacks

 Ciphertext only attacks are generally considered the lowest level of attack
* More sophisticated attacks involve some amount of plaintext-ciphertext pairs

* Probabilistic Polynomial Time or PPT refers to algorithms which take at
most polynomial time while having free use of a true random number

generator

* We will not cover the details in this course, but in general algorithms which have
the capability of periodically making truly random choices are more powerful than

algorithms which do not
* For an example of polynomial time, consider a key of size n = 56 bits: an algorithm
might take n? seconds to compute which is 562 s = 3,136 s = 52.3 minutes

* On the other hand, 2°® s = 824 billion years



DEFINITION 3.8 A private-key encryption scheme II = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-
secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that, for all n,

1
Pr [PrivkK'(n) = 1] < i negl(n),

where the probability is taken over the randommness used by A and the ran-
domness used in the experiment (for choosing the key and the bit b, as well as
any randomness used by Enc).

Note: unless otherwise qualified, when we write “f(n) < g(n)” we mean
that inequality holds for all n.

1t should be clear that Definition 3.8 is weaker than Definition 2.5, which
is equivalent to perfect secrecy. Thus, any perfectly secret encryption scheme
has indistinguishable encryptions in the presence of an eavesdropper. Our
goal, therefore, will be to show that there exist encryption schemes satisfying
the above in which the key is shorter than the message. That is, we will show
schemes that satisfy Definition 3.8 but cannot satisfy Definition 2.5.



An equivalent formulation. Definition 3.8 requires that no PPT adver-
sary can determine which of two messages was encrypted, with probability
significantly better than 1/2. An equivalent formulation is that every PPT ad-
versary behaves the same whether it sees an encryption of mg or of m;. Since
A outputs a single bit, “behaving the same” means it outputs 1 with almost
the same probability in each case. To formalize this, define PrivK’{";(n,b) as
above except that the fixed bit b is used (rather than being chosen at random).
Let out A(Prviea" (n, b)) denote the output bit b’ of A in the experiment. The
following essentially states that no A can determine whether it is running in
experiment PrivK%;(n, 0) or experiment PrivK%'(n, 1).

DEFINITION 3.9 A private-key encryption scheme I1 = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
PPT adversaries A there is a negligible function negl such that

Prlout 4 (PrivK'1(n, 0)) = 1] — Prlout 4 (PrivK®{ 1 (n, 1)) = 1]| < negl(n).

The fact that this is equivalent to Definition 3.8 is left as an exercise.



Notation in Theorem 3.10

* The plaintext message m has length ¢

* mis a message in plaintext
* mis composed of {individual bitsm', 1 <i </

* note that elsewhere in the Katz and Lindell textbook m; is a message block
(i.e., multiple bits in a block)!



We begin by showing that indistinguishability means that ciphertexts leak
no information about individual bits of the plaintext. Formally, say encryption
scheme (Enc, Dec) is EAV-secure (recall then when Gen is omitted, the key is
a uniform n-bit string), and m € {0,1}* is uniform. Then we show that for
any index 1, it is infeasible to guess m® from Ency(m) (where, in this section,
m® denotes the ith bit of m) with probability much better than 1/2.

THEOREM 3.10 Let 11 = (Enc, Dec) be a fized-length private-key encryp-
tion scheme for messages of length ¢ that has indistinguishable encryptions in
the presence of an eavesdropper. Then for all PPT adversaries A and any
i€ {1,...,2L}, there is a negligible function negl such that

Br [A(L®, Encplml] =] £ % + negl(n),

where the probability is taken over uniform m € {0,1}¢ and k € {0,1}", the
randomness of A, and the randomness of Enc.

PROOF The idea behind the proof of this theorem is that if it were possible
to guess the ith bit of m from Encg(m), then it would also be possible to
distinguish between encryptions of messages mgo and m, whose ¢th bits differ.
We formalize this via a proof by reduction, in which we show how to use
any efficient adversary A to construct an efficient adversary A’ such that if A
violates the security notion of the theorem for II, then A’ violates the definition
of indistinguishability for II. (See Section 3.3.2.) Since II has indistinguishable
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Notation and Example for Defn. 3.14

* D is a distinguisher which tests for randomness

* G is a candidate pseudorandom number generator which takes as
input an n-bit seed s and outputs {(n) random bits where #n) > n

* Example where D can distinguish G from a truly random bit sequence
* G(s) outputs seed s followed by the exclusive-or over all the seed bits, P}, s
clearlyfn)=n+1

Algorithm for D: given a “pseudorandom” sequence w from G, output a 1 iff
the last bit of w equals the exclusive-or of all of the preceding bits of w

clearly D runs in polynomial time or less
Pr[D(G(s))=1] =1



DEFINITION 3.14  Let £ be a polynomial and let G be a deterministic
polynomial-time algorithm such that for any n and any input s € {0,1}",
the result G(s) is a string of length £(n). We say that G is a pseudorandom
generator if the following conditions hold:

1. (Expansion:) For every n it holds that £(n) > n.

2. (Pseudorandomness:) For any PPT algorithm D, there is a negligible
function negl such that

| Pr[D(G(s)) = 1] = Pr[D(r) = 1]| < negl(n),

where the first probability is taken over uniform choice of s € {0,1}™ and
the randomness of D, and the second probability is taken over uniform
choice of r € {0,1}¥(™) and the randomness of D.

We call ¢ the expansion factor of G.

©Georgia Institute of Technology, 2018-2024 18



Notation in Theorem 3.10

* A stream cipher is traditionally defined as a variant of a pseudorandom
number generator which generates random bits on demand

* Stream cipher G, maps an input of length n to an output of length {n) > n

* G, uses GetBits which takes input st; and outputs y,, ,

* State information st; is initially given value st, by Init which takes as input
a seed s and an optional initialization vector IV



T I T ‘.\J\iLA.\.JUU\J\_I.}-
Formally, we view a stream cipher? as a pair of deterministic algorithms
(Init, GetBits) where:

® Init takes as input a seed s and an optional initialization vector | V, and
outputs an initial state st;.

* GetBits takes as input state information st;, and outputs a bit y and
updated state st; ;. (In practice, y is a block of several bits; we treat y
as a single bit here for generality and simplicity.)

Given a stream cipher and any desired expansion factor ¢, we can define
an algorithm G, mapping inputs of length n to outputs of length £(n). The
algorithm simply runs Init, and then repeatedly runs GetBits a total of ¢ times.

ALGORITHM 3.16
Constructing G; from (Init, GetBits)

Input: Seed s and optional initialization vector IV
Output: v, ... y Yo

sto := Init(s, I'V)

fori=1to ¢
(yi,sts) := GetBits(st;—;)
return y,,...,y,

2The terminology here is not completely standard, and beware that “stream cipher” is used

ki RGak. Wi AN -—_
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Proof by Reduction: Application to Crypto

 PPT adversary A attacks encryption scheme nt = (Gen, Enc, Dec)
* A has non-negligible probability €(n) of succeeding in breaking nt

* Assume problem X cannot be solved by any PPT adversary

* E.g., problem X could involve finding large prime factors of large numbers, or
distinguishing a particular form of pseudorandom number generator from a true

e Construct A’ which is called the reduction; A’ uses A to attack X

* [f A’ succeeds, then A’ can solve problem X in polynomial time which
contradicts our best current knowledge / assumptions

* Therefore no PPT adversary A can successfully attack encryption
scheme 1 with a non-negligible probability of success
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Reduction AI

Instance X of
problem X

Instance of

scheme 11

“Break”

B Solution to x

FIGURE 3.1: A high-level overview of a security proof by reduction.

©Georgia Institute of Technology, 2018-2024



Comments

* Please note that we are still exclusively considering ciphertext-only
attacks!

* In what follows we will consider a pseudorandom number generator
G with an expansion factor {(n) where {(n) > n
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THEOREM 3.18 If G is a pseudorandom generator, then Construc-
tion 3.17 is a fized-length private-key encryption scheme that has indistin-
guishable encryptions in the presence of an eavesdropper.

PROOF Let II denote Construction 3.17. We show that II satisfies Def-
inition 3.8. Namely, we show that for any probabilistic polynomial-time ad-
versary A there is a negligible function negl such that

1
Pr [PrivK$'(n) =1] < 5 negl(n). (3.2)

The intuition is that if II used a uniform pad in place of the pseudorandom
pad G(k), then the resulting scheme would be identical to the one-time pad
encryption scheme and A would be unable to correctly guess which message
was encrypted with probability any better than 1/2. Thus, if Equation (3.2)
does not hold then A must implicitly be distinguishing the output of G from
a random string. We make this explicit by showing a reduction; namely,
by showing how to use A to construct an eflicient distinguisher D, with the
property that D’s ability to distinguish the output of G from a uniform string

is directly related to .A’s ability to determine which message was encrypted
b TT Qocniritar af ) then imnliae corirvitar nf TT
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CONSTRUCTION 3.17

Let G be a pseudorandom generator with expansion factor £. Define a
private-key encryption scheme for messages of length £ as follows:
e Gen: on input 1", choose uniform k € {0,1}" and output it as
the key.
e Enc: on input a key k € {0,1}" and a message m € {0,1}*(™,

output the ciphertext
c:= G(k) & m.

e Dec: on input a key k € {0,1}™ and a ciphertext ¢ € {0, 1}*(™,
output the message m = G(k) G c.

A private-key encryption scheme based on any pseudorandom generator.
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Proof Sketch

* Suppose G were to be replaced with a one-time pad: then no adversary
would be able to solve Construction 3.17 with non-negligible probability

* Thus, an adversary A can overcome Egn. (3.2) iff A can distinguish a
pseudorandom number generator from a true random number
generator in polynomial time or less

* Reduction A’ is constructed to distinguish a pseudorandom number generator
from a true random number generator

* However, we assume that we have chosen a pseudorandom number
generator that cannot be distinguished from a true random number

generator in polynomial time
* Therefore, no efficient adversary can solve Construction 3.17



Notation for Concrete Security

* Assume n fixed, e.g., n =128

* Let Grun in time at most t
e e.g., consider t = 289 nanoseconds = 13 trillion years

 Say that any distinguisher D should have a fixed probability of less

than € of succeeding
* e.g., consider g = 2760



Concrete security. Although Theorem 3.18 and its proof are in an asymp-
totic setting, we can readily adapt the proof to bound the concrete security
of the encryption scheme in terms of the concrete security of G. Fix some
value of n for the remainder of this discussion, and let II now denote Con-
struction 3.17 using this value of n. Assume G is (t, €)-pseudorandom (for the
given value of n), in the sense that for all distinguishers D running in time at
most ¢ we have

| Pr[D(r) = 1] = Pr[D(G(s)) = 1]| < e. (3.6)

(Think of t ~ 250 and € ~ 2769 though precise values are irrelevant for our
discussion.) We claim that II is (¢ — ¢, €)-secure for some (small) constant c,
in the sense that for all A running in time at most ¢ — ¢ we have

Pr [PrivKS' = 1] <= +e. (3.7)

1
2

(Note that the above are now fixed numbers, not functions of n, since we

are not in an asymptotic settine here.) Th cee thic lat A ha an awhifeae.
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Chosen Plaintext Attacks

* In the real world, an adversary may be able to obtain ciphertext
corresponding to some chosen plaintexts, e.g., via a low level insider
organizing initialization sequences each day

* CPA models can be analyzed using an encryption oracle which can
encrypt plaintexts other than the ones under attack



box” that encrypts messages of A’s choice using a key k that is unknown
to A. That is, we imagine A has access to an “oracle” Encg(-); when 4
queries this oracle by providing it with a message m as input, the oracle
returns a ciphertext ¢ <— Encg(m) as the reply. (When Enc is randomized, the
oracle uses fresh randomness each time it answers a query.) The adversary is
allowed to interact with the encryption oracle adaptively, as many times as it
likes.

Consider the following experiment defined for any encryption scheme IT =
(Gen, Enc, Dec), adversary A, and value n for the security parameter:

cpa

The CPA indistinguishability experiment PrivK Ar(n):

1. A key k 1is generated by running Gen(1™).

2. The adversary A is given input 1™ and oracle access to Ency(+),
and outputs a pair of messages mg, my of the same length.

3. A uniform bit b € {0,1} is chosen, and then a ciphertext
¢ + Enci(myp) is computed and given to A.

4. The adversary A continues to have oracle access to Encg(-),
and outputs a bit b’.

5. The output of the experiment is defined to be 1 if b’ = b, and
0 otherwise. In the former case, we say that A succeeds.
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Private-Key Encryption 75

DEFINITION 3.22 A private-key encryption scheme I1 = (Gen, Enc, Dec)
has indistinguishable encryptions under a chosen-plaintext attack, or is CPA-
secure, if for all probabilistic polynomial-time adversaries A there is a negli-
gible function negl such that

Pr [PrivK<3, (n) = 1} < % + negl(n),

where the probability is taken over the randomness used by A, as well as the
randommness used in the experiment.
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