Cryptography Part II: One-Time Pad *ECE 4156/6156 Hardware-Oriented Security and Trust*

Spring 2024

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Reading Assignment

• Please read Chapter 2 of the course textbook by Katz and Lindell

Recall Slide 11 from Crypto I Lecture

- M is a set of all possible messages, i.e., the message space
- C is a set of all possible ciphertexts, i.e., the ciphertext space
- Gen is a key generation procedure
 - The output of *Gen* is key *k*
 - Gen may or may not require an input

Now We Add the Following

• *K* is a set of all possible keys, i.e., the key space

• In the one-time pad,
$$|K| = |M| = |C| = \mathcal{L}$$

? TE Gen, Enc, Dec

DEFINITION 2.3 Encryption scheme π = (Gen, Enc, Dec) with message space M is **perfectly secret** if for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:

$$\Pr[M = m \mid c \in C] = \Pr[M = m].$$

in other words, rosardicss
of ciphertext seen, e.g.,
the probability of 2 repr.
m³ is the same as any other message.

©Georgia Institute of Technology, 2018-2024

TT= Gen, Enc, Dec

DEFINITION 2.5 Encryption scheme $\Pi = (\text{Gen, Enc, Dec})$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$\Pr\left[\operatorname{PrivK}_{\mathcal{A},\Pi}^{\operatorname{eav}} = 1\right] = \frac{1}{2}.$$

The following lemma states that Definition 2.5 is equivalent to Definition 2.3. We leave the proof of the lemma as Exercise 2.5.

LEMMA 2.6 Encryption scheme Π is perfectly secret if and only if it is perfectly indistinguishable.

Notation

- 1^n denotes 1 repeated n times, e.g., for n = 5 then we have that $1^n = 11111$
 - Note that in Professor Mooney's opinion sometimes Katz and Lindell use 1^n when n would have been just as clear (or even more clear!)
- b is a bit, i.e., it is possible that b=1 or b=0
- b' is a bit, i.e., it is possible that b'=1 or b'=0
 - Note that in Katz and Lindell the apostrophe 'does not signify complementation!
 - In other words, \underline{b}' is just another variable such as \widetilde{b}
 - As a result, it is possible to have both b=1 and $b^\prime=1$
 - It is also possible to have both b=0 and $b^\prime=0$

Adv. May May Formally, let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme with message space \mathcal{M} . Let \mathcal{A} be an adversary, which is formally just a (stateful) algorithm. We define an experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ as follows:

The adversarial indistinguishability experiment $PrivK_{A,\Pi}^{eav}$:

- 1. The adversary \mathcal{A} outputs a pair of messages $m_0, m_1 \in \mathcal{M}$.
- 2. A key k is generated using Gen, and a uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_k(m_b)$ is computed and given to A. We refer to c as the challenge ciphertext.
- 3. A outputs a bit b. ofter polynomial no
- 4. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\text{PrivK}_{\mathcal{A},\Pi}^{\text{eav}} = \text{1}$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.

As noted earlier, it is trivial for \mathcal{A} to succeed with probability 1/2 by outputting a random guess. Perfect indistinguishability requires that it is impossible for any \mathcal{A} to do better.

DEFINITION 2.5 Encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space \mathcal{M} is perfectly indistinguishable if for every \mathcal{A} it holds that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] = \frac{1}{2}\,.$$

Ciptedat 6ny Server K, b it 6=1 C= Enc_k(m₁)

CONSTRUCTION 2.8

Fix an integer $\ell > 0$. The message space \mathcal{M} , key space \mathcal{K} , and ciphertext space \mathcal{C} are all equal to $\{0,1\}^{\ell}$ (the set of all binary strings of length ℓ).

- Gen: the key-generation algorithm chooses a key from $\mathcal{K} = \{0, 1\}^{\ell}$ according to the uniform distribution (i.e., each of the 2^{ℓ} strings in the space is chosen as the key with probability exactly $2^{-\ell}$).
- Enc: given a key $k \in \{0,1\}^{\ell}$ and a message $m \in \{0,1\}^{\ell}$, the encryption algorithm outputs the ciphertext $c := k \oplus m$.
- Dec: given a key $k \in \{0,1\}^{\ell}$ and a ciphertext $c \in \{0,1\}^{\ell}$, the decryption algorithm outputs the message $m := k \oplus c$.

The one-time pad encryption scheme.

(10) Hion

123 AES