
Introduction to SHA-2
ECE 4156/6156 Hardware-Oriented

Security and Trust
Spring 2024

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

Reading Assignment

• Please read Chapters 3 and 5 of the course textbook by Katz and Lindell

©Georgia Institute of Technology, 2018-2024

Notation from Katz and Lindell
• {X} is a set of elements of type X
• m is a message in plaintext

• m is composed of smaller blocks mi suitable for individual encryption steps
• m = {mi}

• ci is ciphertext corresponding to message block mi

• c is ciphertext corresponding to message m
• Enck is encryption with key k

• c  Enck(m)

• Deck is decryption with key k
• m  Deck(c)

• <a,b> is a concatenation of a followed by b

One-Way Hash Functions (Keyless H)
• Given a message m of arbitrary length, a hash function H generates a fixed-

length output h
• h = H(m)

• A hash function is one-way if it satisfies the following
i. Given m and H, it is easy to compute h
ii. Given h and H, it is hard to compute m
iii. Given m and H, it is hard to compute m’ such that H(m’) = H(m)
iv. Given H, it is hard to compute m1 and m2 such that H(m1) = H(m2)

• A one-way hash function can be used to provide a “fingerprint” of m
• Note that properties iii and iv above make it hard for an adversary to change the

message but not the one-way hash value
• Property iv above is also known as collision resistance

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

A More Formal Hash Function Definition
• Formalities

• A hash function H maps a domain into a smaller range
• Let x be an input to H, e.g., if the domain is the set of possible messages, x = m

• If the hash function uses a key, let key s of size n bits be generated by Gen
• Recall that some bitstrings may have to be omitted from the set of possible keys, e.g., DES has a

small set of known weak keys which should be avoided
• A keyed hash function take inputs s and x in order to produce output h

• 𝐻௦ 𝑥 ≝ 𝐻(𝑠, 𝑥)
• Note that many times the adversary trying to defeat a hash function possesses the key; hence, in

order to emphasize the fact that the typical attack surface includes scenarios where the adversary
has possession of the key, a superscript is used for s, i.e., 𝐻௦, instead of a subscript, i.e., 𝐻௦

• Let the number of bits in the domain be l ’ where l ’ > n
• Definition 5.1 from Katz and Lindell

• A hash function  is a pair of polynomial-time algorithms Gen and H such that Gen
outputs a key s and H takes as input x of size l ’ bits and key s to produce output h of
size n bits

©Georgia Institute of Technology, 2018-2024

Collision Experiment on Hash Functions

• Note that as defined a hash function maps a larger number of bits
(l ’) into a smaller number of bits (n)

• Therefore it is impossible to always generate a unique h
• H may also be called or referred to as a compression function

• Note that the above bullet point informally uses H to refer to two algorithms Gen and H

• Collision-finding experiment
• Gen outputs a key s
• Adversary A is given s
• A finds a collision if A can find x and x’ such that ௦(x) = ௦(x’)
• If it is infeasible for A to find a collision, we say that ௦ is collision resistant

©Georgia Institute of Technology, 2018-2024

Weaker Notions of Security

• Target-collision resistance
• Given s and a uniformly random x , it is infeasible for an adversary to find x’

such that ௦(x) = ௦(x’)
• Note1: this is also referred to in the literature as second preimage resistance
• Note2: collision resistance (see previous page) implies target-collision

resistance, i.e., second preimage resistance

• Preimage resistance
• Given s and a uniformly random y , it is infeasible for an adversary to find x

such that ௦(x) = y
• Note that second preimage resistance (i.e., target-collision resistance) already

implies preimage resistance

Why do collisions matter?

• Consider a legal document that is transmitted
• Suppose that the recipient has the expected hash

• More on how encrypted documents and hash values are transmitted later…

• If collisions can be found in a reasonable time, the adversary could
alter the legal document in such a way as to be favorable to the
adversary and result in the same has value

• Keep in mind that a typical file with human readable text values may be
altered in many minor ways without changing the text, e.g., adding extra
whitespaces or commas

©Georgia Institute of Technology, 2018-2024

The Original Widely Used One-way Hash: MD5
• Authored by Ronald Rivest, Professor of Electrical Engineering and Computer

Science at MIT
• Co-author of the asymmetric RSA cryptographic algorithm in 1977
• Invented MD5 in 1991

• MD stands for “Message Digest” and “5” is for Version 5
• The “digest” is the hash value, i.e., a long message is consumed or “digested”

• Example use
• Send the hash value first, i.e., the sender sends h first
• Then send the message M

• Note: the message should be encrypted! We will make our examples more and more realistic as
we explain additional methods and terminology

• The recipient can then calculate h = H(M) and compare with the initial hash value

• Note that no key is used, i.e., the MD5 one-way hash is keyless

©Georgia Institute of Technology, 2018-2024

SHA-1

• In 1993, Den Boer and Bosselaers gave an early, but limited, result of
finding a collision in MD5, although it was not generally applicable

• In 1995 NIST announced the release of a “secure hash algorithm”
version 1, i.e., SHA-1

• By 1996 more attacks on MD5 were announced
• By early 2001 both MD5 and SHA-1 were both considered to be in

danger of becoming broken, and so SHA-2 was announced by NIST
• Note that today both MD5 and SHA-1 are considered to be broken,

i.e., an adversary with sufficient compute power can find collisions

©Georgia Institute of Technology, 2018-2024

SHA-2

• First published in 2001 with public comments accepted
• First complete version published in August 2002

• Digest or hash sizes of 256, 384 or 512

• In 2004, a version of SHA-2 supporting a hash size of 224 was
released to provide backward compatibility

• The first lab in this course uses the 256 bit version of SHA-2 also
known as SHA-256

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

256 bits 256 bits

512 bits

Compression
Function

Block 1

Initial Value
256 bits

Compression
Function

512 bits

Block 4

256 bits

512 bits

Compression
Function

Block 2

256 bits

512 bits

Compression
Function

Block 3

SHA-256 Calculation on 2048 Bits

©Georgia Institute of Technology, 2018-2024

SHA-256 Initial Value

• The initial 256 bits used in SHA-2 were calculated by taking the
fractional parts of the square roots of the first eight prime numbers

• Least significant four bytes = 0x6a09e667
• 0xbb67ae85
• 0x3c6ef372
• 0xa54ff53a
• 0x510e527f
• 0x9b05688c
• 0x1f83d9ab
• Most significant four bytes = 0x5be0cd19

• The initial value never changes (for compatibility with the standard)

Message Padding

• The message to be hashed by SHA-256 needs to be padded to reach a
size of a multiple of 512

©Georgia Institute of Technology, 2018-2024

For Each 512-bit Block

• ଴= least significant 32 bits
• ଵ= next to least significant 32 bits
• …
• ଵହ= most significant 32 bits of the block

©Georgia Institute of Technology, 2018-2024

SHA-256 Compression Function

• Six logical functions are used
• Each function operates on 32-bit words to be easy to implement in sw
•

•

• ଶ ଵଷ
଴

ଶଶ

• where ௡ means rotate left by n bits

• ଺ ଵଵ
ଵ

ଶହ

• ଴
଻ ଵ଼ ଷ

• where ௡ means rotate right by n bits

• ଵ
ଵ଻ ଵଽ ଵ଴

©Georgia Institute of Technology, 2018-2024

SHA-256 Compression Function (continued)

• Let there be four blocks so we have , , ,
• So ଵ is broken up into ଴

ଵ, ଵ
ଵ,…, ଵହ

ଵ

• For each block i, expanded message blocks , ,…,
are computed as follows
• ଴ ଴

௜ , ଵ ଵ
௜ , …, ଵହ ଵହ

௜

• For j = 16 to 63
{

௝ ଵ ௝ିଶ ௝ି଻ ଴ ௝ିଵହ ௝ିଵ଺ (mod 232);
}

©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

SHA-256 Compression Function (continued)

• Let there be four blocks so we have , , ,
• So ଵ is broken up into ଴

ଵ, ଵ
ଵ,…, ଵହ

ଵ

• For each block i, expanded message blocks , ,…,
are computed as follows
• ଴ ଴

௜ , ଵ ଵ
௜ , …, ଵହ ଵହ

௜

• For j = 16 to 63
{

௝ ଵ ௝ିଶ ௝ି଻ ଴ ௝ିଵହ ௝ିଵ଺] (mod 232);
}

Main Loop Initialization
• Let N be the number of blocks (e.g., earlier N = 4)
• Put the initial values in registers as follows for the first block (Block 1):

• ଵ
(଴) = 0x6a09e667

• ଶ
(଴) = 0xbb67ae85

• ଷ
(଴) = 0x3c6ef372

• ସ
(଴) = 0xa54ff53a

• ହ
(଴) = 0x510e527f

• ଺
(଴) = 0x9b05688c

• ଻
(଴) = 0x1f83d9ab

• ଼
(଴) = 0x5be0cd19

• For Blocks 2 and higher, use the previous 256 bit hash result for ଵ
(଴), …, ଼

(଴)

©Georgia Institute of Technology, 2018-2024

Constants K0, …, K63

• 64 constants K0, …, K63 are defined based on the fractional parts of
the cube roots of the first 64 prime numbers

• K0 = 0x428a2f98
• K1 = 0x71374491
• …
• K63 = 0xc67178f2

©Georgia Institute of Technology, 2018-2024

Main Loop
For i = 1 to N
{

ଵ
(௜ିଵ); ଶ

(௜ିଵ); ଷ
(௜ିଵ); ସ

(௜ିଵ); ହ
(௜ିଵ); ଺

(௜ିଵ); ଻
(௜ିଵ); ଼

(௜ିଵ);

For j = 0 to 63
{

Compute , ,
଴ ,

ଵ and ௝;

ଵ

ଵ ௝ Kj (mod 232);

ଶ

ଵ (mod 232);

; ; ; ଵ (mod 232); ;
; ; ଵ ଶ (mod 232);

}

ଵ
(௜)

ଵ
(௜ିଵ)(mod 232); ଶ

(௜)
ଶ
(௜ିଵ) (mod 232); …; ଼

(௜)
଼
(௜ିଵ) (mod 232);

}
©Georgia Institute of Technology, 2018-2024

©Georgia Institute of Technology, 2018-2024

Main Loop
For i = 1 to N
{

ଵ
(௜ିଵ); ଶ

(௜ିଵ); ଷ
(௜ିଵ); ସ

(௜ିଵ); ହ
(௜ିଵ); ଺

(௜ିଵ); ଻
(௜ିଵ); ଼

(௜ିଵ);

For j = 0 to 63
{

Compute , ,
଴ ,

ଵ and ௝;

ଵ

ଵ ௝ Kj](mod 232);

ଶ

ଵ](mod 232);

; ; ; ଵ](mod 232); ;
; ; ଵ ଶ](mod 232);

}

ଵ
(௜)

ଵ
(௜ିଵ)(mod 232); ଶ

(௜)
ଶ
(௜ିଵ) (mod 232); …; ଼

(௜)
଼
(௜ିଵ) (mod 232);

}

Figure for the inner loop (j = 0 to 63)

©Georgia Institute of Technology, 2018-2024
256

Final Result

• The final result is ଵ
(ே), ଶ

(ே), …, ଼
(ே)

• These eight 32-bit values constitute the 256-bit hash result

©Georgia Institute of Technology, 2018-2024

