Introduction to SHA-2
 ECE 4156/6156 Hardware-Oriented Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney III Georgia Institute of Technology

Reading Assignment

- Please read Chapters 3 and 5 of the course textbook by Katz and Lindell

Notation from Katz and Lindell

- $\{X\}$ is a set of elements of type X
- m is a message in plaintext
- m is composed of smaller blocks m_{i} suitable for individual encryption steps
- $m=\left\{m_{i}\right\}$
- c_{i} is ciphertext corresponding to message block m_{i}
- c is ciphertext corresponding to message m
- $E n c_{k}$ is encryption with key k
- $c \leftarrow E n c_{k}(m)$
- Dec ${ }_{k}$ is decryption with key k
- $m \leftarrow \operatorname{Dec}_{k}(c)$
- $\langle a, b\rangle$ is a concatenation of a followed by b

One-Way Hash Functions (Keyless H)

- Given a message m of arbitrary length, a hash function H generates a fixedlength output h
- $h=H(m)$
- A hash function is one-way if it satisfies the following
i. Given m and H, it is easy to compute h
ii. Given h and H, it is hard to compute m
iii. Given m and H, it is hard to compute m^{\prime} such that $H\left(m^{\prime}\right)=H(m)$
iv. Given H, it is hard to compute m_{1} and m_{2} such that $H\left(m_{1}\right)=H\left(m_{2}\right)$
- A one-way hash function can be used to provide a "fingerprint" of m
- Note that properties iii and iv above make it hard for an adversary to change the message but not the one-way hash value
- Property iv above is also known as collision resistance

A More Formal Hash Function Definition

- Formalities
- A hash function H maps a domain into a smaller range
- Let x be an input to H, e.g., if the domain is the set of possible messages, $x=m$
- If the hash function uses a key, let key s of size n bits be generated by Gen
- Recall that some bitstrings may have to be omitted from the set of possible keys, e.g., DES has a small set of known weak keys which should be avoided
- A keyed hash function take inputs s and x in order to produce output h
- $H^{\digamma}(x) \stackrel{\text { def }}{=} H(\delta, x)$
- Note that many times the adversary trying to defeat a hash function possesses the key; hence, in order to emphasize the fact that the typical attack surface includes scenarios where the adversary has possession of the key, a superscript is used for s, i.e., H^{s}, instead of a subscript, i.e., H_{s}
- Let the number of bits in the domain be ℓ^{\prime} where $\ell^{\prime}>n$
- Definition 5.1 from Katz and Lindell
- A hash function π is a pair of polynomial-time algorithms Gen and H such that Gen outputs a key s and H takes as input x of size ℓ^{\prime} bits and key s to produce output h of size n bits

Collision Experiment on Hash Functions

- Note that as defined a hash function π maps a larger number of bits (ℓ ') into a smaller number of bits (n)
- Therefore it is impossible to always generate a unique h
- H may also be called or referred to as a compression function
- Note that the above bullet point informally uses H to refer to two algorithms Gen and H
- Collision-finding experiment
- Gen outputs a key s
- Adversary A is given s
- A finds a collision if A can find x and x^{\prime} such that $H^{s}(x)=H^{s}\left(x^{\prime}\right)$
- If it is infeasible for A to find a collision, we say that H^{s} is collision resistant

Weaker Notions of Security

- Target-collision resistance
- Given s and a uniformly random x, it is infeasible for an adversary to find x^{\prime} such that $H^{s}(x)=H^{s}\left(x^{\prime}\right)$
- Note1: this is also referred to in the literature as second preimage resistance
- Note2: collision resistance (see previous page) implies target-collision resistance, i.e., second preimage resistance
- Preimage resistance
- Given s and a uniformly random y, it is infeasible for an adversary to find x such that $H^{s}(x)=y$
- Note that second preimage resistance (i.e., target-collision resistance) already implies preimage resistance

Why do collisions matter?

- Consider a legal document that is transmitted
- Suppose that the recipient has the expected hash
- More on how encrypted documents and hash values are transmitted later...
- If collisions can be found in a reasonable time, the adversary could alter the legal document in such a way as to be favorable to the adversary and result in the same has value
- Keep in mind that a typical file with human readable text values may be altered in many minor ways without changing the text, e.g., adding extra whitespaces or commas

The Original Widely Used One-way Hash: MD5

- Authored by Ronald Rivest, Professor of Electrical Engineering and Computer Science at MIT
- Co-author of the asymmetric RSA cryptographic algorithm in 1977
- Invented MD5 in 1991
- MD stands for "Message Digest" and " 5 " is for Version 5
- The "digest" is the hash value, i.e., a long message is consumed or "digested"
- Example use
- Send the hash value first, i.e., the sender sends h first
- Then send the message M
- Note: the message should be encrypted! We will make our examples more and more realistic as we explain additional methods and terminology
- The recipient can then calculate $h=H(M)$ and compare with the initial hash value
- Note that no key is used, i.e., the MD5 one-way hash is keyless

SHA-1

- In 1993, Den Boer and Bosselaers gave an early, but limited, result of finding a collision in MD5, although it was not generally applicable
- In 1995 NIST announced the release of a "secure hash algorithm" version 1, i.e., SHA-1
- By 1996 more attacks on MD5 were announced
- By early 2001 both MD5 and SHA-1 were both considered to be in danger of becoming broken, and so SHA-2 was announced by NIST
- Note that today both MD5 and SHA-1 are considered to be broken, i.e., an adversary with sufficient compute power can find collisions

SHA-2

- First published in 2001 with public comments accepted
- First complete version published in August 2002
- Digest or hash sizes of 256,384 or 512
- In 2004, a version of SHA-2 supporting a hash size of 224 was released to provide backward compatibility
- The first lab in this course uses the 256 bit version of SHA-2 also known as SHA-256

SHA-256 Calculation on 2048 Bits

©Georgia Institute of Technology, 2018-2024

SHA-256 Initial Value

- The initial 256 bits used in SHA-2 were calculated by taking the fractional parts of the square roots of the first eight prime numbers
- Least significant four bytes $=0 \times 6 a 09 \mathrm{e} 667$
- 0xbb67ae85
- 0x3c6ef372
- 0xa54ff53a
- 0x510e527f
- 0x9b05688c
- 0x1f83d9ab
- Most significant four bytes = 0x5be0cd19
- The initial value never changes (for compatibility with the standard)

Message Padding

- The message to be hashed by SHA-256 needs to be padded to reach a size of a multiple of 512

For Each 512-bit Block

- $M_{0}=$ least significant 32 bits
- $M_{1}=$ next to least significant 32 bits
- $M_{15}=$ most significant 32 bits of the block

SHA-256 Compression Function

- Six logical functions are used
- Each function operates on 32-bit words to be easy to implement in sw
- $\operatorname{Ch}(x, y, z)=(x$ OR y) XOR $(\operatorname{not}(x) O R z)$
- $\operatorname{Maj}(x, y, z)=(x$ OR y) XOR (x OR $z) X O R(y O R z)$
- $\sum_{0}(x)=S^{2}(x) X O R S^{13}(x) X O R S^{22}(x)$
- where $S^{n}(x)$ means rotate x left by n bits
- $\sum_{1}(x)=S^{6}(x) \operatorname{XOR} S^{11}(x) \operatorname{XOR} S^{25}(x)$
- $\sigma_{0}(x)=S^{7}(x) X O R S^{18}(x) X O R R^{3}(x)$
- where $R^{n}(x)$ means rotate x right by n bits
- $\sigma_{1}(x)=S^{17}(x) X O R S^{19}(x) X O R R^{10}(x)$

SHA-256 Compression Function (continued)

- Let there be four blocks so we have $M^{1}, M^{2}, M^{3}, M^{4}$
- So M^{1} is broken up into $M_{0}^{1}, M_{1}^{1}, \ldots, M_{15}^{1}$
- For each block i, expanded message blocks $W_{0}, W_{1}, \ldots, W_{63}$ are computed as follows
- $W_{0}=M_{0}^{i}, W_{1}=M_{1}^{i}, \ldots, W_{15}=M_{15}^{i}$
- For $\mathrm{j}=16$ to 63
\{

$$
W_{j}=\sigma_{1}\left(W_{j-2}\right)+W_{j-7}+\sigma_{0}\left(W_{j-15}\right)+W_{j-16}\left(\bmod 2^{32}\right) ;
$$

\}

SHA-256 Compression Function (continued)

- Let there be four blocks so we have $M^{1}, M^{2}, M^{3}, M^{4}$
- So M^{1} is broken up into $M_{0}^{1}, M_{1}^{1}, \ldots, M_{15}^{1}$
- For each block i, expanded message blocks $W_{0}, W_{1}, \ldots, W_{63}$ are computed as follows
- $W_{0}=M_{0}^{i}, W_{1}=M_{1}^{i}, \ldots, W_{15}=M_{15}^{i}$
- For $\mathrm{j}=16$ to 63
\{

$$
W_{j}=\left[\sigma_{1}\left(W_{j-2}\right)+W_{j-7}+\sigma_{0}\left(W_{j-15}\right)+W_{j-16}\right]\left(\bmod 2^{32}\right) ;
$$

\}

Main Loop Initialization

- Let N be the number of blocks (e.g., earlier $N=4$)
- Put the initial values in registers as follows for the first block (Block 1):
- $H_{1}^{(0)}=0 x 6 a 09 \mathrm{e} 667$
- $H_{2}^{(0)}=0 x b b 67 a e 85$
- $H_{3}^{(0)}=0 \times 3 \mathrm{c} 6 \mathrm{ef} 372$
- $H_{4}^{(0)}=0 \times 254 f f 53 a$
- $H_{5}^{(0)}=0 x 510 e 527 f$
- $H_{6}^{(0)}=0 \times 9 b 05688 c$
- $H_{7}^{(0)}=0 \times 1 f 83 \mathrm{~d} 9 \mathrm{ab}$
- $H_{8}^{(0)}=0 \times 5 b e 0 c d 19$
- For Blocks 2 and higher, use the previous 256 bit hash result for $H_{1}^{(0)}, \ldots, H_{8}^{(0)}$

Constants $\mathrm{K}_{0}, \ldots, \mathrm{~K}_{63}$

- 64 constants $\mathrm{K}_{0}, \ldots, \mathrm{~K}_{63}$ are defined based on the fractional parts of the cube roots of the first 64 prime numbers
- $\mathrm{K}_{0}=0 \times 428 \mathrm{a} 2 \mathrm{f} 98$
- $\mathrm{K}_{1}=0 \times 71374491$
-...
- $\mathrm{K}_{63}=0 x c 67178 f 2$

Main Loop

For $\mathrm{i}=1$ to N

\{

$$
\mathrm{a}=H_{1}^{(i-1)} ; b=H_{2}^{(i-1)} ; c=H_{3}^{(i-1)} ; d=H_{4}^{(i-1)} ; e=H_{5}^{(i-1)} ; f=H_{6}^{(i-1)} ; g=H_{7}^{(i-1)} ; h=H_{8}^{(i-1)} ;
$$

For $\mathrm{j}=0$ to 63
\{
Compute $\operatorname{Ch}(e, f, g), \operatorname{Maj}(a, b, c), \sum_{0}(a), \sum_{1}(e)$ and W_{j};
$T_{1}=h+\sum_{1}(e)+C h(e, f, g)+W_{j}+\mathrm{K}_{\mathrm{j}}\left(\bmod 2^{32}\right) ;$
$T_{2}=h+\sum_{1}(e)+\operatorname{Maj}(a, b, c)\left(\bmod 2^{32}\right)$;
$h=g ; g=f ; f=e ; e=d+T_{1}\left(\bmod 2^{32}\right) ; d=c$;
$c=b ; b=a ; a=T_{1}+T_{2}\left(\bmod 2^{32}\right) ;$
\}

$$
H_{1}^{(i)}=a+H_{1}^{(i-1)}\left(\bmod 2^{32}\right) ; H_{2}^{(i)}=b+H_{2}^{(i-1)}\left(\bmod 2^{32}\right) ; \ldots ; H_{8}^{(i)}=h+H_{8}^{(i-1)}\left(\bmod 2^{32}\right)
$$

\}

Main Loop

For $\mathrm{i}=1$ to N

\{

$$
\mathrm{a}=H_{1}^{(i-1)} ; b=H_{2}^{(i-1)} ; c=H_{3}^{(i-1)} ; d=H_{4}^{(i-1)} ; e=H_{5}^{(i-1)} ; f=H_{6}^{(i-1)} ; g=H_{7}^{(i-1)} ; h=H_{8}^{(i-1)}
$$

For $\mathrm{j}=0$ to 63
\{
Compute $\operatorname{Ch}(e, f, g), \operatorname{Maj}(a, b, c), \sum_{0}(a), \sum_{1}(e)$ and W_{j};
$T_{1}=\left[h+\sum_{1}(e)+C h(e, f, g)+W_{j}+K_{j}\right]\left(\bmod 2^{32}\right) ;$
$T_{2}=\left[h+\sum_{1}(e)+\operatorname{Maj}(a, b, c)\right]\left(\bmod 2^{32}\right) ;$
$h=g ; g=f ; f=e ; e=\left[d+T_{1}\right]\left(\bmod 2^{32}\right) ; d=c$;
$c=b ; b=a ; a=\left[T_{1}+T_{2}\right]\left(\bmod 2^{32}\right) ;$
\}

$$
H_{1}^{(i)}=a+H_{1}^{(i-1)}\left(\bmod 2^{32}\right) ; H_{2}^{(i)}=b+H_{2}^{(i-1)}\left(\bmod 2^{32}\right) ; \ldots ; H_{8}^{(i)}=h+H_{8}^{(i-1)}\left(\bmod 2^{32}\right)
$$

\}

Figure for the inner loop ($\mathrm{j}=0$ to 63)

Final Result

- The final result is $H_{1}^{(N)}, H_{2}^{(N)}, \ldots, H_{8}^{(N)}$
- These eight 32 -bit values constitute the 256 -bit hash result

