Introduction to SHA-2
ECE 4156/6156 Hardware-Oriented
Security and Trust

Spring 2024
Assoc. Prof. Vincent John Mooney Il

Georgia Institute of Technology

©Georgia Institute of Technology, 2018-2024

Reading Assignment

* Please read Chapters 3 and 5 of the course textbook by Katz and Lindell

Notation from Katz and Lindell

* {X}is a set of elements of type X

* mis a message in plaintext
* m is composed of smaller blocks m; suitable for individual encryption steps

*m={m}
* ¢;is ciphertext corresponding to message block m,
* cis ciphertext corresponding to message m
* Enc, is encryption with key k
* ¢ < Enc,(m)
* Dec, is decryption with key k
* m <« Dec,(c)
e <ag,b> is a concatenation of a followed by b

One-Way Hash Functions (Keyless H)

* Given a message m of arbitrary length, a hash function H generates a fixed-
length output h
* h=H(m)

* A hash function is one-way if it satisfies the following
i. GivenmandH, itis easy to compute h
ii. Given handH, itis hard to compute m
iii. Given mand H, it is hard to compute m’ such that H(m’) = H(m)
iv. Given H, itis hard to compute m, and m, such that H(m,) = H(m,)

* A one-way hash function can be used to provide a “fingerprint” of m

* Note that properties iii and iv above make it hard for an adversary to change the
message but not the one-way hash value

* Property iv above is also known as collision resistance

A More Formal Hash Function Definition

* Formalities

e A hash function H maps a domain into a smaller range
* Let xbe aninputtoH, e.g., if the domain is the set of possible messages, x=m
* |f the hash function uses a key, let key s of size n bits be generated by Gexv

* Recall that some bitstrings may have to be omitted from the set of possible keys, e.g., DES has a
small set of known weak keys which should be avoided

* A keyed hash function take inputs s and xin order to produce output h
« ¥ (x) & H(S;x)
* Note that many times the adversary trying to defeat a hash function possesses the key; hence, in

order to emphasize the fact that the typical attack surface includes scenarios where the adversary
has possession of the key, a superscript is used for s, i.e., H®, instead of a subscript, i.e., H;

e Let the number of bits in the domain be /" where !’ > n

e Definition 5.1 from Katz and Lindell

* A hash function m is a pair of polynomial-time algorithms Gexv and H such that Gexsv
outputs a key s and H takes as input x of size {’ bits and key s to produce output h of
size n bits

Collision Experiment on Hash Functions

* Note that as defined a hash function © maps a larger number of bits
(') into a smaller number of bits (n)
* Therefore it is impossible to always generate a unique h
* H may also be called or referred to as a compression function
* Note that the above bullet point informally uses H to refer to two algorithms Gevv and H

* Collision-finding experiment

* Gevvoutputs akeys

* Adversary A is given s

* A finds a collision if A can find x and x” such that H°(x) = H®(x")

* |f it is infeasible for A to find a collision, we say that H® is collision resistant

Weaker Notions of Security

» Target-collision resistance

e Given s and a uniformly random x, it is infeasible for an adversary to find x’
such that H®(x) = H°(x")

* Notel: this is also referred to in the literature as second preimage resistance

* Note2: collision resistance (see previous page) implies target-collision
resistance, i.e., second preimage resistance

* Preimage resistance

* Given s and a uniformly random p, it is infeasible for an adversary to find x
such that H®(x) = y

* Note that second preimage resistance (i.e., target-collision resistance) already
implies preimage resistance

Why do collisions matter?

e Consider a legal document that is transmitted

e Suppose that the recipient has the expected hash
* More on how encrypted documents and hash values are transmitted later...

* If collisions can be found in a reasonable time, the adversary could
alter the legal document in such a way as to be favorable to the
adversary and result in the same has value

* Keep in mind that a typical file with human readable text values may be
altered in many minor ways without changing the text, e.g., adding extra
whitespaces or commas

The Original Widely Used One-way Hash: MD5

* Authored by Ronald Rivest, Professor of Electrical Engineering and Computer
Science at MIT
e Co-author of the asymmetric RSA cryptographic algorithm in 1977
* Invented MD5 in 1991

* MD stands for “Message Digest” and “5” is for Version 5
* The “digest” is the hash value, i.e., a long message is consumed or “digested”

* Example use
e Send the hash value first, i.e., the sender sends h first

* Then send the message M

* Note: the message should be encrypted! We will make our examples more and more realistic as
we explain additional methods and terminology

* The recipient can then calculate h = H(M) and compare with the initial hash value
* Note that no key is used, i.e., the MD5 one-way hash is keyless

SHA-1

* In 1993, Den Boer and Bosselaers gave an early, but limited, result of
finding a collision in MD5, although it was not generally applicable

* In 1995 NIST announced the release of a “secure hash algorithm”
version 1, i.e., SHA-1

* By 1996 more attacks on MD5 were announced

* By early 2001 both MD5 and SHA-1 were both considered to be in
danger of becoming broken, and so SHA-2 was announced by NIST

* Note that today both MD5 and SHA-1 are considered to be broken,
i.e., an adversary with sufficient compute power can find collisions

SHA-2

* First published in 2001 with public comments accepted

* First complete version published in August 2002
* Digest or hash sizes of 256, 384 or 512

* In 2004, a version of SHA-2 supporting a hash size of 224 was
released to provide backward compatibility

* The first lab in this course uses the 256 bit version of SHA-2 also
known as SHA-256

SHA-256 Calculation on 2048 Bits

Block 1 Block 2 Block 3 Block 4
512 bits 512 bits 512 b|ts 512 bits
b T Al TV T
Compression Compressn Compressn Compression
Function / Function / Function / Function
\\/ \\/
256 bits |— 256 bits . 256 blts | 256 blts | 256 bits }—

Initial Value

SHA-256 Initial Value

* The initial 256 bits used in SHA-2 were calculated by taking the
fractional parts of the square roots of the first eight prime numbers

* Least significant four bytes = 0x6a09e667

* Oxbb67ae85

* Ox3c6ef372

* Oxa54ff53a

* Ox510e527f

* 0x9b05688c

* Ox1f83d9ab

* Most significant four bytes = 0x5be0Ocd19

* The initial value never changes (for compatibility with the standard)

Message Padding

* The message to be hashed by SHA-256 needs to be padded to reach a
size of a multiple of 512

For Each 512-bit Block

* M= least significant 32 bits
* M= next to least significant 32 bits

* M= most significant 32 bits of the block

SHA-256 Compression Function

* Six logical functions are used

* Each function operates on 32-bit words to be easy to implement in sw
* Ch(x,y,z) = (x OR y) XOR (not(x) OR z)

* Maj(x,y,z) = (x ORy) XOR (x OR z) XOR (y OR z)

« Yo(x) = S%(x) XOR S13(x) XOR 5% (x)

* where S™(x) means rotate x left by n bits
e Y. (x) = S%(x) XOR S (x) XOR $%°(x)
e 05(x) = S7(x) XOR S*3(x) XOR R3(x)

* where R™(x) means rotate x right by n bits

e o1(x) = S (x) XOR S*°(x) XOR R*°(x)

SHA-256 Compression Function (continued)

e Let there be four blocks so we have M1, M? M3 6 M*
* So M1 is broken up into M3, M1,...,Mi:
* For each block i, expanded message blocks W,, W,...,Wes
are computed as follows
c Wy = M§, Wy = M, ..., Wis = M.
* Forj=16to 63
{
Wi = o1 (Wj_2) + Wj_7 + 0o(Wj_15) + Wj_16 (mod 232);
}

SHA-256 Compression Function (continued)

e Let there be four blocks so we have M1, M? M3 6 M*
* So M1 is broken up into M3, M1,...,Mi:
* For each block i, expanded message blocks W,, W,...,Wes
are computed as follows
c Wy = M§, Wy = M, ..., Wis = M.
* Forj=16to 63
{
W = [o1(Wj—2) + Wj_7 + 0o(Wj_15) + Wj_16] (mod 232);
}

Main Loop Initialization

* Let N be the number of blocks (e.g., earlier N = 4)

e Put the initial values in registers as follows for the first block (Block 1):
« H® = 0x6a09e667
H® = 0xbb67ae85
H® = 0x3c6ef372
H® = 0xa54ff53a
H = 0x510e527f
H® = 0x9b05688¢
H® = 0x1f83d9ab
« H'® = 0x5be0cd19
0)

* For Blocks 2 and higher, use the previous 256 bit hash result for H; ", ..., Héo)

Constants K, ..., Kgs

* 64 constants K,, ..., K¢; are defined based on the fractional parts of
the cube roots of the first 64 prime numbers

* K, = 0x428a2f98
* K, =0x71374491

* K, = Oxc67178f2

Main Loop

Fori=1toN
{

4 = H1(i_1)i b= Hgi—l); c = Hé"_l); d = Hii_l); e = Héi_l); f= Héi_l); g = Hgi_l); h = Héi_l);
Forj=0to 63

{
Compute Ch(e, f,g), Maj(a, b, c), X.o(a), X.1(e) and W;;
Ty =h+XY,(e) + Ch(e, f,g) + W; + K, (mod 232);
T, =h+),(e) + Maj(a,b,c) (mod 23?);
h=g,9=f;,f=ee=d+T; (mod23);d = c;
c=b;b=a;a=T; +T, (mod23?);

}

Hl(i) =a+ Hl(i_l)(mod 232); Hz(i) =b+ Hz(i_l) (mod 232); ...; Héi) =h+ Héi_l) (mod 232);

Main Loop

Fori=1toN
{

4 = H1(i_1)i b= Hgi—l); c = Hé"_l); d = Hii_l); e = Héi_l); f= Héi_l); g = Hgi_l); h = Héi_l);
Forj=0to 63

{
Compute Ch(e, f,g), Maj(a, b, c), X.o(a), X.1(e) and W;;
Ty = [h+ X4(e) + Ch(e, f,g) + W; + K [(mod 23%);
T, =[h+).(e) + Maj(a,b,c)](mod 23?);
h=g,g=ff=ee=[d+T;]mod2%),d=c;

c =b;b=a;a=[T;+T, 1(mod 23?);

I

}

Hl(i) =a+ Hl(i_l)(mod 232); Hz(i) =b+ Hz(i_l) (mod 232); ...; Héi) =h+ Héi_l) (mod 232);

Figure for the inner loop (j = 0 to 63)
d e i g

-

\\
2
D=,
®- Dk

\\\\\1

Y Y Y Y Y Y
a b c d e Jf h
©Georgia Institute of Technology, 201s-2024

- 256 bits >

Final Result

* The final result is Hl(N), HZ(N), . HéN)
* These eight 32-bit values constitute the 256-bit hash result

