
Hardware-Oriented Security and Trust

ECE 4156 HST / ECE 6156 HST
Spring 2024

Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology

Homework 4, 75 pts. (ECE 4156) 90 pts. (ECE 6156)

Due Friday February 9 prior to 11:55pm

1) (15 pts.) Consider the stateful variant of CBC-mode encryption where the sender simply

increments the IV by 1 each time a message is encrypted (rather than choosing IV at random

each time). Show that the resulting scheme is not CPA-secure. (NOTE: this is problem 3.20

on page 104 of Katz and Lindell.)

Solution

Define A as follows:

(a) Query the encryption oracle with the message m = 0n-1 ∥ 1. Receive in return a cipher text

〈𝐼𝑉, c〉.
(b) If 𝐼𝑉 is odd (i.e., the least significant bit is 1), then output a random bit.

(c) If 𝐼𝑉 is even, then output a pair of messages m0, m1 where m0 = 0n and m1 is any other message.

Receive in return a challenge cipher text 〈𝐼𝑉 + 1, c′〉.
(d) If c == c′ output 0; else output 1.

The probability of success for A when 𝐼𝑉 is odd is 50%. For even 𝐼𝑉, consider the fact that 𝐼𝑉

is incremented by 1 for the next encryption. Therefore, since 𝐼𝑉 is even, the result is that

𝐼𝑉 + 1  =  𝐼𝑉  ⊕  (0𝑛−1||1). Thus, for even 𝐼𝑉, we find the following from step (a) above:

𝑐 =  𝐹𝑘(𝐼𝑉 ⊕𝑚)
𝑐 = 𝐹𝑘(𝐼𝑉 ⊕𝑚⊕0)

𝑐 = 𝐹𝑘(𝐼𝑉 ⊕𝑚⊕0𝑛−11⊕ 0𝑛−11)
𝑐 = 𝐹𝑘(𝐼𝑉 ⊕ 0𝑛−11⊕𝑚⊕ 0𝑛−11 )

𝑐 = 𝐹𝑘(𝐼𝑉 + 1⊕𝑚⊕ 0𝑛−11 )
𝑐 = 𝐹𝑘(𝐼𝑉 + 1⊕ 0𝑛−11⊕ 0𝑛−11)

𝑐 = 𝐹𝑘(𝐼𝑉 + 1⊕𝑚0)

The challenge cipher text (𝐼𝑉 +1, c’) is the encrypted text of m0 if c’ == c; in this case, then A

correctly outputs 0. Otherwise, for even 𝐼𝑉, c’ ≠ c, then A correctly outputs 1. Thus, the overall

success probability of A is ¼ + ½ hence there is 75 % success probability. The modified CBC

mode is not CPA-secure.

2) (10 pts.) What is the effect of a single-bit error in the ciphertext when using the CBC and

CTR modes of operation? (NOTE: this is slightly simpler version of problem 3.21 on page

104 of Katz and Lindell.)

Solution

Given that a cipher text c1, c2, ... generated from a message m1, m2, ... has a bit flipped in its

stream of bits (e.g., ci has a bit flipped). We look at the effect of decrypting the resulting

(modified) ciphertext using each of the stated modes to obtain a message m1’, m2’, ….

CBC mode:

Assuming that a single bit being flipped in ci will result in a modified block ci’. When decrypting,

mi’ = 𝐹𝑘
−1(𝑐𝑖

′)⊕ 𝑐𝑖−1. This value will be completely different than the expected value of 𝐹𝑘
−1(𝑐𝑖).

Hence, the obtained value for the bit flipped message block is irrelevant and has no relation to

mi. The next message block will be computed by 𝑚𝑖+1
     ′ = 𝐹𝑘

−1(𝑐𝑖+1)⊕ 𝑐𝑖
′. The message block

𝑚𝑖+1
     ′ will be almost equal to mi+1 but with a single bit flipped. The rest of the message blocks will

be unchanged.

CTR Mode:

A bit flip in ciphertext 𝑐𝑖 where i > 0 will only cause the message block mi to flip a single bit.

But if the initial ciphertext block 𝑐0 (i.e., the counter!) has a bit flipped this will cause the whole

message to be decrypted incorrectly.

3) (10 pts.) What is the effect of a dropped ciphertext block (e.g., if the transmitted cipher-

text 𝑐1, 𝑐2, 𝑐3, … is received as 𝑐1, 𝑐3, …) when using CBC and CTR modes of operation?

(NOTE: this is slightly simpler version of problem 3.22 on page 104 of Katz and Lindell.)

We are given that a cipher text c1, c2, c3, c4,… from message m1, m2, m3, m4,… has a block 𝑐𝑖
dropped from its stream of blocks (e.g., each block may have 128 bits) being transmitted.

Solution

CBC mode:

A single block 𝑐𝑖 being dropped will result in a decrypted message m1, m2, …, mi, mi+1’, mi+2 ,

…. In other words, message blocks before position i are recovered correctly, message block i is

lost entirely, message block i+1 is garbled, and message blocks after position i+1 are recovered

correctly but are shifted by one block.

CTR Mode:

A block dropped 𝑐𝑖 will cause the message to only recover message blocks up until just prior to

position i. From position i onwards the remaining decrypted message blocks will incorrect.

4) (10 pts.) Say CBC-mode encryption is used with a block cipher having a 256-bit key and

128-bit block length to encrypt a 1024-bit message. What is the length of the resulting

ciphertext? (NOTE: this is problem 3.23 on page 105 of Katz and Lindell.)

Solution

Given,

 Key Length = 256

Block length = 128

Message length = 1024

Number of message blocks = 1024/128

= 8

The cipher text will have a size equal to (the number of message blocks +1) * 128

= 9 *128

= 1152

Therefore, the ciphertext is 1152 bits long.

5) (20 pts.) Use your own words (do not copy from any source!) to explain the Merkle-

Damgård construction. Please assume four blocks and a compression function from <2m,2n>

to 2n where n = 8 and m = 9. In your answer, make sure to answer the following questions:

(i) what is the goal of the Merkle-Damgård construction and (ii) what does the Merkle-

Damgård construction prove? You may use the picture on the next page in your answer.

Block 1

2m bits

Block 2

2m bits

Block 3

2m bits

Block 4

2m bits

Compression
Function

Compression
Function

Compression
Function

Compression
Function

2n bits 2n bits

Initial Value

2n bits 2n bits 2n bits

Solution

(i) The goal of the Merkle-Damgård construction is to provide both a method and a proof for

how to construct a collision-resistant hash function for arbitrary-length inputs given a collision-

resistant hash function for fixed-length inputs.

(ii) The Merkle-Damgård construction proves that if the fixed-length input hash function used

is collision-resistant, then the arbitrary-length hash function constructed must also be

collision-resistant.

In the figure above, assume that the four blocks provided have n = 8 and m = 9. The functions

shown are four repetitions of a 768-bit to 256-bit compression function. The construction

results in a 2048-bit to 256-bit hash function which is provably collision resistant if the

individual 768-bit to 256-bit compression functions are collision-resistant.

6) (10 pts.) Consider the case where N = 5 and t = 2. This is a secret sharing scenario, e.g.,

five company executives where 2 out of the 5 must be present to enter their password

information in order to open a safe. Now consider the case of a 10-bit key required to carry

out an action (e.g., open a safe). This key will be predicted from the inputs provided by any

two of the executives. Please note that as discussed in class the key would in an actual

practical scenario have a large number of bits, e.g., 128; however, in this homework we are

going to use a number less than one thousand (i.e., can be represented in ten bits) for ease of

providing an answer.

a. (1) Choose a key between one and one thousand, email the TA, Kevin Hutto, at
khutto30@gatech.edu and then check the course webpage for homeworks
http://mooney.gatech.edu/Courses/ECE4156/hwlabexam/index.html to see if
your number has already been taken or not. You need to make a first attempt to
choose a number prior to 10am on Tuesday Feb. 6. If your first name, first letter
of your last name, and selected number appear under hw4, you are done.
Otherwise, prior to 10am on Wednesday Feb. 7, you need to make a second
attempt to choose a number between one and one thousand and send another
email to the TA. Again, if your first name and number appears under homework
4, you are done. Otherwise, prior to 10am on Thursday Feb. 8, you need to
choose a third number. Please just use a decimal representation, i.e., choose
between 1 and 999.

Choose a key between 1-999 before the deadline to not lose a point.

b. (9) For your given key, set the 10-bit key on the y-axis of a Cartesian plane

consisting of zero to 1023 on the y-axis and zero to 1023 on the x-axis. Choose two

points in Cartesian coordinates which define a line that intersects the y-axis at the

key location. Specify these two 2-dimensional points x1,y1 and x2,y2.

NOTE: the points you choose must all have a y-axis coordinate different than the

key, i.e., y1 ≠ key and y2 ≠ key.

Solution

Assuming two points (x1,y1) and (x2,y2).

First finding the slope we get slope (m)

Finding the y intercepts, y_int = y – m*x

 y_int_1= K

 y_int_2= K

The two points (x1,y1) and (x2,y2) intersects the y-axis at the key location.

Here is a list of possible answers (not all answers provided by the class have been

included!).

Key x1, y1 x2, y2

1 1,2 2,3

17 1,34 2,51

37 250,23 500,9

100 40,140 80,180

161 2,162 4,163

227 100,419 300,803

250 100,300 350,425

276 300,552 600,828

337 103,543 251,839

448 100,473 200,498

613 200,473 400,333

672 300,447 500,297

776 23,385 42,62

777 290,574 650,322

900 137,626 322,256

7) [ECE 6156 only!] (15) Given your choice in 6.b, write pseudocode in a C-like syntax (or

C++-like syntax or even a Java-like syntax) which, given two inputs from two of the execu-

tives, calculates the key. Use the code below as a starting point for your pseudocode. Please

note that this problem will not be graded on syntax but rather on readability and correct-

ness, so do please explain any assumptions with comments. For example, below the value

key is the number you selected via email to the teaching assistant. Finally, please note that

your pseudocode should work independently of the values of key, x1, y1, x2 and y2.

Solution

First of all, note that the slope of the line can be calculated by subtracting the second key

from the first:

slope = (y2 - y1)/(x2 - x1).

Note however that if the second point is further from the y-axis, then the direction of the

slope (i.e., the sign) needs to be changed:

if (x1 < x2) then slope = -slope

The calculated key occurs at the y-intercept, i.e., x = 0

Since slope = (y - y1)/(x - x1) = (y - y2)/(x - x2) = (y2 - y1)/(x2 - x1),

for the point (0, y) (Y-intercept) the final result is that we find that

key = y1 - slope*x1 = y2 - slope*x2. The resulting pseudocode is as follows:

int key; /* this is your key value selected in 2.a */

int testkey(x1, y1, x2, y2) {

int x1,x2,y1,y2;

Boolean condition; /* condition is either equal to 1 or is equal to 0 */

/* fill in pseudocode here */

double slope, y_int_1, y_int_2;

slope = (y2-y1)/(x2/x1);

y_int_1 = (y1 - slope*x1);

y_int_2 = (y2 - slope*x2);

condition = 0;

if (y_int_1 == y_int_2)

if (y_int_1 == key)

 condition =1;

 if (condition)

return (1); /* if x1,y1 and x2,y2 intercept the y-axis at key */

else

return (0); /* if x1,y1 and x2,y2 do no intercept the y-axis at key */

}

