
Hardware-Oriented Security and Trust
ECE 4156 HST / ECE 6156 HST

Spring 2025
Assoc. Prof. Vincent John Mooney III

Georgia Institute of Technology
Homework 4, 75 pts. (ECE 4156) 90 pts. (ECE 6156)

Due Friday February 7 prior to 11:55pm

1) (15 pts.) Consider the stateful variant of CBC-mode encryption where the sender simply
increments the IV by 1 each time a message is encrypted (rather than choosing IV at random
each time). Show that the resulting scheme is not CPA-secure. (NOTE: this is problem 3.20 on
page 104 of the 2nd edition of Katz and Lindell but appears to have been removed from the 3rd
edition; I am not sure why.)

Solution

Define A as follows:
(a) Query the encryption oracle with the message m = <0n-1, 1>. Receive in return a
cipher text 〈𝐼𝑉, c〉.
(b) If 𝐼𝑉 is odd (i.e., the least significant bit is 1), then output a random bit.
(c) If 𝐼𝑉 is even, then output a pair of messages m0, m1 where m0 = 0n and m1 is any
other message. Receive in return a challenge cipher text 〈𝐼𝑉 + 1, c′〉.
(d) If c == c′ output 0; else output 1.

The probability of success for A when 𝐼𝑉 is odd is 50%. For even 𝐼𝑉, consider the fact
that 𝐼𝑉 is incremented by 1 for the next encryption. Therefore, since 𝐼𝑉 is even, the
result is the following: 𝐼𝑉 + 1  =  𝐼𝑉  ⊕  (0௡ିଵ||1).
Thus, for even 𝐼𝑉, we find the following from step (a) above:

𝑐 =  𝐹௞(𝐼𝑉 ⊕𝑚)
𝑐 = 𝐹௞(𝐼𝑉 ⊕𝑚⊕0)

𝑐 = 𝐹௞(𝐼𝑉 ⊕𝑚⊕0௡ିଵ1⊕ 0௡ିଵ1)
𝑐 = 𝐹௞(𝐼𝑉 ⊕ 0௡ିଵ1⊕𝑚⊕ 0௡ିଵ1 )

𝑐 = 𝐹௞(𝐼𝑉 + 1⊕𝑚⊕ 0௡ିଵ1 )
Recall from step (a) in the above, 𝑚 = <0n-1, 1> = 0௡ିଵ1 (under the rules of
concatenation). Therefore, we replace 𝑚 by 0௡ିଵ1 and continue:

𝑐 = 𝐹௞(𝐼𝑉 + 1⊕ 0௡ିଵ1⊕ 0௡ିଵ1)
𝑐 = 𝐹௞(𝐼𝑉 + 1⊕𝑚଴)

The challenge cipher text (𝐼𝑉 +1, c’) is the encrypted text of m0 if c’ == c; in this case,
then A correctly outputs 0. Otherwise, for even 𝐼𝑉, c’ ≠ c, then A correctly outputs 1.
Thus, the overall success probability of A is ¼ + ½ hence there is 75 % success
probability. The modified CBC mode is not CPA-secure.

2) (10 pts.) What is the effect of a single-bit error in the ciphertext when using the CBC and
CTR modes of operation? (NOTE: this is slightly simpler version of problem 3.21 on page 104
of the 2nd edition of Katz and Lindell which is problem 3.29 on page 103 of the 3rd edition.)

Solution

Given that a cipher text c1, c2, ... generated from a message m1, m2, ... has a bit flipped in its
stream of bits (e.g., ci has a bit flipped). We look at the effect of decrypting the resulting
(modified) ciphertext using each of the stated modes to obtain a message m1’, m2’, ….

CBC mode:
Assuming that a single bit being flipped in ci will result in a modified block ci’. When
decrypting, mi’ = 𝐹௞

ିଵ(𝑐௜
ᇱ) ⊕ 𝑐௜ିଵ. This value will be completely different than the expected

value of 𝐹௞
ିଵ(𝑐௜). Hence, the obtained value for the bit flipped message block is irrelevant and

has no relation to mi. The next message block will be computed by 𝑚௜ାଵ
     ᇲ = 𝐹௞

ିଵ(𝑐௜ାଵ) ⊕ 𝑐௜
ᇱ.

The message block 𝑚௜ାଵ
     ᇲ will be almost equal to mi+1 but with a single bit flipped. The rest of

the message blocks will be unchanged.

CTR Mode:
A bit flip in ciphertext 𝑐௜ where i > 0 will only cause the message block mi to flip a single
bit. But if the initial ciphertext block 𝑐଴ has a bit flipped this will cause the whole message
to be decrypted incorrectly.

3) (10 pts.) What is the effect of a dropped ciphertext block (e.g., if the transmitted ciphertext
𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … is received as 𝑐ଵ, 𝑐ଷ, …) when using CBC and CTR modes of operation? (NOTE:
this is slightly simpler version of problem 3.22 on page 104 of the 2nd edition of Katz and
Lindell which is problem 3.30 on page 104 of the 3rd edition Katz and Lindell.)

Solution

CBC mode:
A single block 𝑐௜ being dropped will result in a decrypted message m1, m2, …, mi, mi+1’,
mi+2 , …. In other words, message blocks before position i are recovered correctly, message
block i is lost entirely, message block i+1 is garbled, and message blocks after position i+1
are recovered correctly but are shifted by one block.

CTR Mode:
A block dropped 𝑐௜ will cause the message to only recover message blocks up until just
prior to position i. From position i onwards the remaining decrypted message blocks will be
incorrect.

4) (10 pts.) Say CBC-mode encryption is used with a block cipher having a 256-bit key and
128-bit block length to encrypt a 1024-bit message. What is the length of the resulting
ciphertext? (NOTE: this is problem 3.23 on page 105 of the 2nd edition of Katz and Lindell
which is problem 3.26 on page 103 of the 3rd edition of Katz and Lindell.)

Solution

Given,
Key Length = 256
Block length = 128
Message length = 1024

No of message blocks = 1024/128
= 8
The cipher text will be Message blocks +1
= 9 *128
= 1152
Therefore, the ciphertext is 1152 bits long.

5) (20 pts.) Use your own words (do not copy from any source!) to explain the Merkle-
Damgård construction. Please assume four blocks and a compression function from <2m,2n> to
2n where n = 8 and m = 9. In your answer, make sure to answer the following questions:
(i) what is the goal of the Merkle-Damgård construction and (ii) what does the Merkle-Damgård
construction prove? You may use the picture on the next page in your answer.

Solution

(i) The goal of the Merkle-Damgård construction is to provide both a method and a

proof for how to construct a collision-resistant hash function for arbitrary-length
inputs given a collision-resistant hash function for fixed-length inputs.

2n bits 2n bits

2m bits

Compression
Function

Block 1

Initial Value
2n bits

Compression
Function

2m bits

Block 4

2n bits

2m bits

Compression
Function

Block 2

2n bits

2m bits

Compression
Function

Block 3

 (ii) The Merkle-Damgård construction proves that if the fixed-length input hash
function used is collision-resistant, then the arbitrary-length hash function
constructed must also be collision-resistant.

In the figure above, assume that the four blocks provided have n = 8 and m=9.
The functions shown are four repetitions of a 768-bit to 256-bit compression
function. The construction results in a 2048-bit to 256-bit hash function which is
provably collision resistant if the individual 768-bit to 256-bit compression
functions are collision-resistant.

6) (10 pts.) Consider the case where N = 5 and t = 2. This is a secret sharing scenario, e.g.,
five company executives where 2 out of the 5 must be present to enter their password
information in order to open a safe. Now consider the case of a 10-bit key required to carry out
an action (e.g., open a safe). This key will be predicted from the inputs provided by any two of
the executives. Please note that as discussed in class the key would in an actual practical
scenario have a large number of bits, e.g., 128; however, in this homework we are going to use
a number less than one thousand (i.e., can be represented in ten bits) for ease of providing an
answer.

a. (1 pt.) Choose a key between two and one thousand, email the TA, Arman Allahverdi,
at aallahverdi3@gatech.edu and then check the course webpage for homeworks
http://mooney.gatech.edu/Courses/ECE4156/hwlabexam/index.html
to see if your number has already been taken or not. You need to make a first attempt
to choose a number prior to 10am on Tuesday Feb. 4. If your first name, first letter of
your last name, and selected number appear under hw4, you are done. Otherwise, prior
to 10am on Wednesday Feb. 5, you need to make a second attempt to choose a number
between one and one thousand and send another email to the TA. Again, if your first
name and number appears under homework 4, you are done. Otherwise, prior to 10am
on Thursday Feb. 6, you need to choose a third number. Please just use a decimal
representation, i.e., choose between 2 and 999.

b. (9 pts.) For your given key, set the 10-bit key on the y-axis of a Cartesian plane
consisting of zero to 1023 on the y-axis and zero to 1023 on the x-axis. Choose two
points in Cartesian coordinates which define a line that intersects the y-axis at the key
location. Specify these two 2-dimensional points x1,y1 and x2,y2.

NOTE: the points you choose must all have a y-axis coordinate different than the key,
i.e., y1 ≠ key and y2 ≠ key.

Solution

Assuming two points (x1,y1) and (x2,y2).

First finding the slope we get slope (m)
Finding the y intercepts, y_int= y- mx
y_int_1= K
y_int_2= K
The two points (x1,y1) and (x2,y2) each intersect the y-axis at the key location.

Here is a list of a few possible answers (not all answers provided by the class
have been included).

Key x1, y1 x2, y2
2 1, 887 2, 889
5 10, 73 20, 123
53 1, 54 2, 55
97 100, 197 300, 397
99 1, 100 29, 128
125 25, 100 100, 25
293 38, 375 190, 703
306 1, 307 2, 308
329 250, 501 699, 795
487 13, 136 3, 406
709 200, 759 400, 809

7) [ECE 6156 only!] (15 pts.) Given your choice in 6.b, write pseudocode in a C-like syntax
(or C++-like syntax or even a Java-like syntax) which, given two inputs from two of the
executives, calculates the key. Use the code below as a starting point for your pseudocode.
Please note that this problem will not be graded on syntax but rather on readability and
correctness, so do please explain any assumptions with comments. For example, below the
value key is the number you selected via email to the TA. Finally, please note that your
pseudocode should work independently of the values of key, x1, y1, x2 and y2.

Solution

First, note that the slope of the line can be calculated by subtracting the second key
from the first:

slope = (y2 - y1)/(x2 - x1).
Note however that if the second point is further from the y-axis, then the direction of
the slope (i.e., the sign) needs to be changed:

if (x1 < x2) then slope = -slope
The calculated key occurs at the y-intercept, i.e., x = 0
Since slope = (y - y1)/(x - x1) = (y - y2)/(x - x2) = (y2 - y1)/(x2 - x1),
for the point (0, y) (Y-intercept) the result is that we find that
key = y1 - slope*x1 = y2 - slope*x2. The resulting pseudocode is as follows:

int key; /* this is your key value selected in 2.a */
int testkey(x1, y1, x2, y2) {
int x1,x2,y1,y2;
Boolean condition; /* condition is either equal to 1 or is
equal to 0 */
/* fill in pseudocode here */
double slope, y_int_1, y_int_2;
slope = (y2-y1)/(x2/x1);
y_int_1 = (y1 - slope*x1);
y_int_2 = (y2 - slope*x2);
condition = 0;
if (y_int_1 == y_int_2)
if (y_int_1 == key) condition =1;
 if (condition)
return (1); /* if x1,y1 and x2,y2 intercept the y-axis at
key */
else
return (0); /* if x1,y1 and x2,y2 do no intercept the y-
axis at key */
}

YOU MAY NOT CONSULT HOMEWORK SOLUTIONS OF THESE EXACT
PROBLEMS FROM OTHER COURSES, INCLUDING OTHER/PREVIOUS
SECTIONS OF ECE COURSES TAUGHT BY PROFESSOR MOONEY SUCH AS
THOSE WITH NAMES INCLUDING HARDWARE ORIENTED SECURITY AND
TRUST AS WELL AS CRYPTOGRAPHIC HARDWARE FOR EMBEDDED
SYSTEMS. ALL HOMEWORK SUBMISSIONS MUST INCLUDE YOUR NAME,
COURSE NUMBER, SECTION, AND THE HOMEWORK SET NUMBER. ALL
SUBMISSIONS MUST BE DONE ONLINE. ALL WRITING MUST BE EASY TO
READ (FOR EXAMPLE, YOU MAY HAVE TO WRITE WITH THICK INK AND
MAY NOT BE ABLE TO USE LOW RESOLUTION PHOTOS OF HANDWRITTEN
DIAGRAMS). FAILURE TO PROVIDE CLEAR AND LEGIBLE ANSWERS MAY
RESULT IN ZERO POINTS. ALL WORK MUST BE YOUR OWN. NO
PLAGIARISM IS ALLOWED, AND YOU MUST PROPERLY REFERENCE ALL
SOURCES OF YOUR INFORMATION – ALTHOUGH YOU SHOULD NOT LOOK
FOR AND MAY NOT CONSULT “SOLUTIONS” AVAILABLE FROM OTHER
SOURCES (TO REPEAT, YOU MAY NOT CONSULT HOMEWORK SOLUTIONS
OF THESE EXACT PROBLEMS FROM OTHER COURSES!).

