
Hardware-Oriented Security and Trust 
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Spring 2024 
Assoc. Prof. Vincent John Mooney III 

Georgia Institute of Technology 
Homework 3, 65 pts. (ECE 4156) 90 pts. (ECE 6156) 

Due Friday February 2 prior to 11:55pm 
 
1) (5 pts.) In the Media Gallery on Canvas, listen to the lecture “05MerkleDamgard.” There 
is no need to notify Professor Mooney that you have done so unless you have problems. 
Canvas provides information regarding which GT usernames have accessed / listened to 
lectures, so there is no need to turn anything in if you have been successful. 

 
Watch the video in Media Gallery 
 
 
 
2) (15 pts.) Consider the following keyed function 𝐹𝐹: for security parameter 𝑛𝑛, the key is an 
𝑛𝑛 x 𝑛𝑛 Boolean matrix 𝐴𝐴 and an 𝑛𝑛-bit Boolean vector b. Define 𝐹𝐹A,b ∶ {0,1}n → {0,1}n  by 
𝐹𝐹A,b(𝑥𝑥) ≝ 𝐴𝐴𝑥𝑥 + 𝑏𝑏, where all operations are done modulo 2. Show that 𝐹𝐹 is not a 
pseudorandom function. (NOTE: this is problem 3.13 on page 103 of Katz and Lindell.) 

 
Solution 
 
Given, 
𝐹𝐹A,b(𝑥𝑥) ≝ 𝐴𝐴𝑥𝑥 + 𝑏𝑏 
 Where 𝐹𝐹A,b ∶ {0,1}n → {0,1}n 
This function is not a pseudorandom function. 
 
Proof: 
𝐹𝐹A,b(𝑥𝑥) ≝ 𝐴𝐴𝑥𝑥 + 𝑏𝑏 
Plugging in a zero vector 0n = [0,0,…,0n-1] will reveal the vector 𝑏𝑏. 
𝐹𝐹A,b(0n) =𝐴𝐴(0n) + 𝑏𝑏 
  = b  

Therefore, inserting a zero vector revealed the 𝑏𝑏 vector. 
 
Similarly, the keyed function can be solved for 𝐴𝐴. 
By plugging in with only 1 one and the rest zeros, it is possible to find the columns of 𝐴𝐴. 
 
 
 
 



For example: 
 
𝐹𝐹A,b([1,0,…,0n-1]) =𝐴𝐴(1,0,…,0n-1) + 𝑏𝑏 
 
As the 𝑏𝑏 vector values are already known, taking the result from the calculation above and 
subtracting the corresponding 𝑏𝑏 vector value will yield the 1st column of 𝐴𝐴. 
 
Similarly, calculate  𝐹𝐹A,b([0,1,…,0n-1) =𝐴𝐴(0,1,…,0n-1) + 𝑏𝑏 
Taking the result and subtracting the 𝑏𝑏 vector value will yield the 2nd column of 𝐴𝐴. 
 
Solving for all n columns in this manner, we shall obtain the vector 𝐴𝐴. 
 
With both the 𝐴𝐴 and 𝑏𝑏 vectors known, it is possible to create a distinguisher which makes the 
function deterministic and not pseudorandom.  
 

As the function 𝐹𝐹A,b(𝑥𝑥) is deterministic,  Pr�𝐷𝐷𝐹𝐹𝑘𝑘(.)(1𝑛𝑛) = 1�   = 1 
 

It does not satisfy the condition �Pr�𝐷𝐷𝐹𝐹𝑘𝑘(.)(1𝑛𝑛) = 1� − Pr�𝐷𝐷𝑓𝑓(.)(1𝑛𝑛) = 1�� ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛), 
 

�Pr�𝐷𝐷𝐹𝐹𝑘𝑘(.)(1𝑛𝑛) = 1� − Pr�𝐷𝐷𝑓𝑓(.)(1𝑛𝑛) = 1�� > 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛), 
 

∴  FA,b  : {0,1}n → {0,1}n  is not a pseudorandom function. 
  



3) (25 pts.) Let 𝐹𝐹 be a pseudorandom permutation and define a fixed-length encryption 
scheme (Enc, Dec) as follows: On input 𝑚𝑚 = {0,1}n/2 and key 𝑘𝑘 ∈ {0,1}n, algorithm Enc 
chooses a uniform string 𝑟𝑟 ∈ {0,1}n/2 of length 𝑛𝑛/2 and computes 𝑐𝑐 ≔ 𝐹𝐹k(𝑟𝑟||𝑚𝑚). 
Show how to decrypt and provide an intuitive reason why this scheme is CPA-secure for 
messages of length n/2. (NOTE1: 𝑟𝑟||𝑚𝑚 denotes For example, if 𝑟𝑟 = 0110 and 𝑚𝑚 = 1100 
then one possibility is 𝑟𝑟||𝑚𝑚 = 01101100.) (NOTE2: this problem is very similar to problem 
3.18 on page 104 of Katz and Lindell.) (NOTE3: the “intuitive reason” requested will not 
be graded in a harsh manner – in other words, if you provide a solid reason you will receive 
full credit even if there are a variety of   solid, intuitive reasons possible. Of course, if you 
provide a “reason” which is vague or incorrect, you will lose points.) 

 
Solution 
 
Given, 
input 𝑚𝑚 = {0,1}n/2 

key 𝑘𝑘 ∈ {0,1}n 
𝑟𝑟 ∈ {0,1}n/2 
𝑐𝑐 ≔ 𝐹𝐹k(𝑟𝑟||𝑚𝑚) 
Need to decipher the ciphertext 𝑐𝑐 ≔ 𝐹𝐹k(𝑟𝑟||𝑚𝑚). 
Why is this scheme CPA-secure? 

 
Proof: 

The ciphertext can be decrypted for a message 𝑚𝑚, where 𝑚𝑚 = {0,1}n/2 , by first applying 
the inverse of the encryption scheme 𝑐𝑐 ≔ 𝐹𝐹k(𝑟𝑟||𝑚𝑚) 

 𝑑𝑑𝑛𝑛𝑑𝑑 ≔ 𝐹𝐹𝑘𝑘−1(𝑑𝑑) 
    ≔ (𝑟𝑟||𝑚𝑚) 

where || denotes unambiguous concatenation of 𝑟𝑟 followed by 𝑚𝑚. 
 
As the decryption is unambiguously concatenated, both the uniform string and message will be 
of equal length n/2 and will be able to be distinguished.  This means that the decrypted text’s  
n/2 bits corresponding to the message can be obtained from the decryption result.  
 
_____________________________________________________________________________ 
The given scheme is CPA-secure as the adversary can only make a polynomial set of queries to 
the encryption oracle, and so the chance that the encryption oracle picks the same random 
number 𝑟𝑟 is negligible.  If the selected same random number 𝑟𝑟 is not the same, the query yields 
no useful information for the adversary.  Since the probability of guessing 𝑟𝑟 is negligible,  

 

Pr� PrivK Α,Π
𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) = 1�   ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛) 
 

Therefore, the given pseudorandom permutation is CPA-secure.



4) (15 pts.) Let 𝐹𝐹 be a pseudorandom function and 𝐺𝐺 be a pseudorandom generator with 
expansion factor l (n) = n + 1. For the following encryption schemes, state whether the 
scheme has indistinguishable encryptions in the presence of an eavesdropper and whether it 
is CPA-secure. (In each case, the shared key is a uniform 𝑘𝑘 ∈ {0,1}n.) Explain your answer. 

Encryption scheme: To encrypt 𝑚𝑚 ∈ {0,1}n , choose uniform 𝑟𝑟 ∈ {0,1}n and output the 
ciphertext ⟨𝑟𝑟, 𝐺𝐺(𝑟𝑟) ⊕ 𝑚𝑚⟩. 
(NOTE: this is part a of problem 3.19 on page 104 of Katz and Lindell.) 

 
Solution 
 
Given, 
ciphertext C = ⟨𝑟𝑟, 𝐺𝐺(𝑟𝑟) ⊕ 𝑚𝑚⟩ 
𝑚𝑚 ∈ {0,1}n  
𝑘𝑘 ∈ {0,1}n 
𝑟𝑟 ∈ {0,1}n 

 
The given encryption scheme is distinguishable and is not CPA-secure. 
 
Proof: 
 
The text in the ciphertext is sent without a key so the adversary can obtain 𝑟𝑟 via eavesdropping. 
Once 𝑟𝑟 is obtained it can be used to find (𝑟𝑟) using the generator.  With 𝐺𝐺(r), finding 𝑚𝑚 is 
straightforward.  𝑚𝑚 is obtained by performing an XOR of 𝑑𝑑 with 𝐺𝐺(𝑟𝑟). 
 

𝐺𝐺(𝑟𝑟)  ⊕  𝑑𝑑  = 𝑚𝑚 
 

As the text is distinguishable, the scheme is not CPA-secure. 
 

 
 
 
 
 
5) [ECE 6156 only!] (20 pts.) Let 𝐹𝐹 be a pseudorandom function and 𝐺𝐺 be a pseudorandom  
generator with expansion factor l (n) = n + 1. For each of the following encryption schemes, 
state whether the scheme has indistinguishable encryptions in the presence of an 
eavesdropper and whether it is CPA-secure. (In each case, the shared key is a uniform 𝑘𝑘 ∈  
{0,1}n.) Explain your answer. 

a. To encrypt 𝑚𝑚 ∈ {0,1}n, output the ciphertext 𝑚𝑚⊕ 𝐹𝐹k(0n). 
b. To encrypt 𝑚𝑚 ∈ {0,1}2n, parse 𝑚𝑚 as 𝑚𝑚1 ||𝑚𝑚2 with | 𝑚𝑚1| = |𝑚𝑚2|, then choose uniform 

𝑟𝑟 ∈ {0,1}n and output the ciphertext ⟨𝑟𝑟, 𝑚𝑚1 ⊕ 𝐹𝐹k(𝑟𝑟), 𝑚𝑚2 ⊕ 𝐹𝐹k(𝑟𝑟+ 1)⟩. 
(NOTE: this is part b and part c of problem 3.19 on page 104 of Katz and Lindell.) 

 
 
 
 
 
 
 



Solution 
 

a. Given 
𝑑𝑑 = 𝑚𝑚⊕ 𝐹𝐹k(0n) 
note that 𝐹𝐹k(0n) will always output the same value.  The cipher text 𝑑𝑑 = 𝑚𝑚⊕ 𝐹𝐹k(0n) 
will always output the same value for a given message 𝑚𝑚.  When the adversary has 
access to the oracle, the adversary can solve for 𝐹𝐹k(0n) and 𝑚𝑚 by finding the XOR of 
the cipher with 𝑚𝑚 and 𝐹𝐹k(0n) respectively.  Therefore, the given scheme is not CPA-
secure.  
But the scheme is indistinguishable for an eavesdropper as 𝐹𝐹k(xn) is a pseudorandom 
function.  Thus, the message cannot be guessed even though the ciphertext 𝑑𝑑 is 
known.  𝑚𝑚⊕ 𝐹𝐹k(0n) acts as a one-time pad and is indistinguishable. 

 
 

b. Given 
𝑑𝑑 = ⟨𝑟𝑟, 𝑚𝑚1 ⊕ 𝐹𝐹k(𝑟𝑟), 𝑚𝑚2 ⊕ 𝐹𝐹k(𝑟𝑟+ 1)⟩ 
 
If the adversary has access to the oracle, as 𝐹𝐹k is a psuedorandom function and is 
indistinguishable in the presence of an eavesdropper. Thus, 𝐹𝐹k(𝑟𝑟+1) and 𝐹𝐹k(𝑟𝑟) have 
negligible probability of being distinguished.  
 
The scheme is also CPA-secure.  The scheme uses pseudorandom function 𝐹𝐹k and 
has negligible probability  �𝑞𝑞(𝑛𝑛)

2𝑛𝑛
�  to find 𝑚𝑚1 or 𝑚𝑚2 where 𝑞𝑞(𝑛𝑛) is the number of 

queries to the oracle.  As a result, there is negligible probability of finding m.   
Therefore, the given scheme is indistinguishable and CPA-secure. 
 
A proof of this is very similar to the proof of Theorem 3.31 except that Repeat 
denotes the event that 𝑟𝑟-1, 𝑟𝑟 or 𝑟𝑟+1 is chosen in another ciphertext. 
 

 
 

 


