Hiding Countermeasures in Cryptographic Hardware: Part I

Cryptographic Hardware for Embedded Systems

ECE 3894

Fall 2019
Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology
Reading

Goal of Hiding Measures in Cryptographic Hardware

• Sever relationship between energy consumption (i.e., power) and the calculations being performed
 • Sever the relationship between power and the operation (for software, assembly instruction) being performed
 • Sever the relationship between power the data value(s) being used

• There is no exploitable relationship between energy consumption and calculations being performed if either of the following two conditions hold true
 • A random amount of energy is consumed each clock cycle
 • A constant amount of energy is consumed each clock cycle
Time Dimension

• Power analysis attacks often rely on the same operation being performed at the same point in time (same relative to the start of the cryptographic computation) in each of a collection of power traces

• A countermeasure then is to randomize the execution sequence of operations necessary for the cryptographic computation
 • Dummy operation insertion at random
 • Each time a cryptographic computation, e.g., encryption, is performed, random numbers are generated based on which dummy operations are inserted at random code locations
 • Shuffling
 • Change the sequence of actual cryptographic operations each time, e.g., execute the substitution box (S-BOX) operations in a different order (in AES there are 16 S-BOX operations each round which can occur in any order within the round)
 • Advantageous over dummy insertions as execution time not increased

©Georgia Institute of Technology, 2018-2019
Amplitude Dimension

• Goal: reduce SNR

• Option 1: increase the noise
 • Method 1.1: increase the architecture bit-width
 • E.g., change an AES architecture from 32 bits to 128 bit operations in parallel
 • Method 1.2: add dedicated noise engines
 • E.g., amplify thermal noise with an operational amplifier

• Option 2: decrease the signal
 • Method 2.1: design transistor logic with flat energy consumption characteristics
 • Method 2.2: filter the power rails
 • E.g., add an on-chip filter to the metal lines carrying the power and ground supplies
Table 7.1. Hiding countermeasures to make the power consumption of cryptographic devices random or equal during all clock cycles.

<table>
<thead>
<tr>
<th></th>
<th>Equal power consumption</th>
<th>Random power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time dimension</td>
<td>-</td>
<td>Dummy operations, shuffling</td>
</tr>
<tr>
<td>Amplitude dimension</td>
<td>Reduction of signal</td>
<td>Increase of noise</td>
</tr>
</tbody>
</table>
Architectural Level Hiding in Software

• **Time Dimension**
 • Randomized insertion of dummy assembly instructions
 • Randomized execution of portions of cryptographic algorithm where order does not matter
 • Note that both of the above require high quality random numbers to be generated

• **Amplitude Dimension**
 • Choose instructions with lower information leakage
 • Avoid conditional jumps, especially when related to the key value
 • Try to limit memory addresses based on key values; when necessary, choose addresses with similar or the same Hamming Weights
 • Activate coprocessors or communications interfaces in parallel with the execution of cryptographic algorithms
Architecture Level in Hardware

• Time dimension
 • Randomized insertion of dummy logic operations
 • Randomized execution of portions of the cryptographic algorithm where order does not matter
 • Randomized insertion of dummy clock cycles
 • Can alternate with dummy logic operations, e.g., with a duplicated set of registers
 • Randomly skip clock pulses / edges
 • Randomly change the clock frequency
 • Maintain several different clock domains and randomly switch among them

• Note that all of the above require high quality random numbers and require that the techniques themselves not be detectable
Architecture Level in Hardware (cont’d)

• Amplitude dimension
 • Place a filter between the power and ground distribution network (metal layers) on-chip and the input and output pads connected to the power supply
 • A variety of approaches exist including switched capacitors, constant current sources and other known techniques
 • Generate noise in parallel with (at the same time as) the cryptographic algorithm
 • Uses random numbers
 • Typically requires a network of large capacitors which are charged and discharged based on the random numbers

• Note that not all techniques work well against all power measurement setups/equipment
 • E.g., measurement of electromagnetic emanation from many locations on-chip may not be significantly impacted by the placement of filters at the I/O pads