Power Analysis Part II.c

Cryptographic Hardware for Embedded Systems

ECE 3894

Fall 2019

Assoc. Prof. Vincent John Mooney III
Georgia Institute of Technology

©Georgia Insitute of Technology, 2018-2019
Reading

Question Answered by This Lecture

• How specifically are different power traces gathered and what is their design in order to reveal the information claimed to have been learned?
Power Analysis

• Recall that $P_{total} = P_{op} + P_{data} + P_{el.\ noise} + P_{const}$

• Note that P_{const} is a constant and we can use the same assembly instruction or operation so that P_{op} is also a constant

• Thus, the first component to model is electrical noise ($P_{el.\ noise}$)

• The next component to model is data dependent power (P_{data})

• Therefore, we need power traces to isolate each
Data Dependent Energy Consumption / Power

• Consider a single assembly instruction which loads a byte from on-chip memory to a register
 • Note we assume the closest level – Level 1 or L1 – of on-chip memory
 • Also notice that we are not varying the instruction at all
 • Finally, note that we assume byte-addressable memory (which may not be supported in modern 64-bit processors including those used in embedded devices!)

• Vary the eight bit memory data value among all 256 possible values

• 200 measurements for each value = 256* 200 = 51,200 total measurements
 • Note that for the data value of 0b00000000 = 0x00, there are only 200 measurements; thus, to obtain 10,000 power measurements for this case, an additional 9,800 must be taken
Operation Dependent Energy Consumption / Power

• Case 1: unpipelined single issue processor, e.g., microcontroller
 • Only one operation is underway at any point in time
 • Isolation of the operation-dependent power based on time of execution
Figure 5.3. The sequence of AddRoundKey, SubBytes, and ShiftRows operations.

Figure 5.4. The annotated sequence of AddRoundKey, SubBytes, and ShiftRows operations.

```
LCALL SET_ROUND_TRIGGER
MOV A,ASM_input + 0 ; load a0
XRL A,ASM_key + 0 ; add k0
MOVC A,@A + DPTR ; S-box look-up
MOV ASM_input, A ; store a0
LCALL CLEAR_ROUND_TRIGGER
```

Figure 5.5. The sequence of assembly instructions that corresponds to Figure 5.4.
Operation Dependent Energy Consumption / Power

- **Case 1:** unpipelined single issue processor, e.g., microcontroller
 - Only one operation is underway at any point in time
 - Isolation of the operation-dependent power based on time of execution

- **Case 2:** pipelined single issue processor, e.g., 5 stages
 - E.g., Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM) and Write Back (WB); at any clock cycle there may be up to five instructions executing
 - Additional modeling and statistics are required beyond the scope of this course

- **Case 3:** pipelined multiple issue processor
 - Also beyond our scope

- **Cases 4 and beyond:** out of order, multicore, etc.
 - Even more complicated and also beyond our scope, but possible to analyze
Example

• A “case 1” processor operates on an 8-bit value where each bit is independent and uniformly distributed

• Assume that the value of the second bit is always the complement of the first bit in the experiments carried out
 • E.g., 0bX_7X_6X_5X_4X_3X_2X_10 and 0bY_7Y_6Y_5Y_4Y_3Y_2Y_11 where the first bit considered in our analysis is the case of the LSB = 0 and the second bit considered in our analysis is the case of the LSB = 1
 • The other 14 bits are independent and uniformly distributed

• \(P_{\text{exp}} \) consists of the energy consumed by the LSB
• \(P_{\text{switching}} \) consists of the energy consumed by the rest of the bits
Example (continued)

• We have 51,200 power traces as computed already earlier
• Select the 25,600 traces with LSB = 1
• Figure 4.6 shows the resulting histogram at 362 ns
Correlation and Covariance

• Two points are correlated if they vary together in a related way
• Statistical measure: covariance

 \[Cov(X,Y) = E[(X-E(X))*(Y-E(Y))] = E(XY) - E(X) - E(Y) \]

• Theoretical and empirical formulas:

 \[
 \rho(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)\times Var(Y)}}
 \]

 \[
 r = \frac{\sum_{i=1}^{n}(x_i-\bar{x}_i)(y_i-\bar{y}_i)}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x}_i)^2\times \sum_{i=1}^{n}(y_i-\bar{y}_i)^2}}
 \]

• As defined, the correlation coefficient \(\rho \) varies between -1 and 1, i.e., \(-1 \leq \rho \leq 1 \) and also thus \(-1 \leq r \leq 1 \)
Figure 4.9. Scatter Plot: The power consumption at 362 ns is correlated to the power consumption at 363 ns. \(r = 0.82 \)

Figure 4.10. Scatter Plot: The power consumption at 362 ns is largely uncorrelated to the power consumption at 400 ns. \(r = 0.12 \)